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Abstract—From first-order incremental ΣΔ converters to
controlled-oscillator-based converters, many ADC architectures
are based on the continuous-time integration of the input signal.
However, the accuracy of such converters cannot be properly
estimated without establishing the impact of noise. In fact, noise
is also integrated, resulting in a random error that is added
to the measured value. Since drifting phenomena may make
simulations and practical measurements unable to ensure long-
term reliability of the converters, a theoretical tool is required.
This paper presents a solution to compute the standard deviation
of the noise-generated error in continuous-time integrator-based
ADCs, under the assumption that a previous measure is used
to calibrate the system. In addition to produce a realistic case,
this assumption allows to handle a theoretical issue that made
the problem not properly solvable. The theory is developed, the
equations are solved in the cases of pure white noise, pure flicker
noise and low-pass filtered white noise, and the implementation
issues implied by the provided formulas are addressed.

Index Terms—Noise, White noise, Flicker noise, Error, Ac-
curacy, Standard deviation, Variance, Integrator-based ADC,
Incremental, Sigma-Delta.

I. INTRODUCTION

MANY ADC structures are based on integrating the input

signal on a given time interval. In fact, when consid-

ering converting a signal that is constant or that varies slowly

enough, value-to-frequency conversion is often an efficient

way to reach high resolution [1], [2].

Such a conversion can be implemented using a current-

controlled oscillator as in [3]: the input signal feeds an

integrator that is reseted each time its output reaches a given

threshold value. Another widely used implementation is the

first-order incremental ΣΔ converter, as in [4] and [5]: the

integrator output is compared to the threshold value only at the

rising edges of the clock, but instead of resetting it, constant

values are subtracted to its output.

Besides, when measuring a low current (e.g. the one from a

photodiode), integrating it on a capacitance prior to conversion

is a practical way to amplify it and translate it into a voltage,

which is easier to convert [6].

In any of these cases, what is actually measured is ideally

the average value of the input signal s(t) on time interval

during which it is integrated [0, τ ]: 〈s〉 = 1
τ

∫ τ

0
s(t) dt.

However, in practice, a noise signal δs is added to the input

signal s. It includes both the noise at the input of the converter

and the input referred-noise of the integrator. So, without

considering any additional imperfection, what is measured is:
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smeas =
1

τ

∫ τ

0

(s(t) + δs(t)) dt = 〈s〉+ ε (1)

Thus the input-referred noise δs results in an error

ε = 〈δs〉 = 1
τ

∫ τ

0
δs(t) dt. This is a random variable having

a null expected value and a normal distribution. In order to

estimate at best the accuracy of the considered ADC, it is

required to estimate the standard deviation σε of this error.

Note that in some contexts and because of drifting phe-

nomena typically due to flicker noise, a theoretical tool is

required to estimate this standard deviation. For example,

when considering an implanted biomedical sensor that is

expected to work for months or even years, simulations and

practical measurements may not be sufficient to ensure the

reliability of the system.

In the electronics-related literature, trace of this issue can

be found back to 1962 [7]. However, only the case of low-pass

filtered white noise was considered. More recently, in 2007, [8]

addressed the case of pure white noise and pure flicker noise.

The obtained standard deviations σε were computed from the

formula:

σ2
ε =

1

τ2

∫ ∞

0

2S(ω)

ω2
[1− cos(ω τ)] dω (2)

where S(ω) is the power spectral density of the input-referred

noise δs.

However, this integral diverge for ω → 0 as soon as

S(ω)
ω→0∼ A

ωα with α ≥ 1 (which is typically the case with

the noise produced by PMOS). The solution proposed in [8] is

to integrate only from a minimal pulsation ωmin below which

the signal is considered as constant. This solution is not satis-

factory. In fact, the arbitrary choice of ωmin can considerably

impact the computed σε. Actually, if calibration is considered

to reject the DC error, the lowest noise frequencies are partially

compensated, and the more the frequency increases, the less

this compensation occurs. This phenomenon must be taken

into account, and doing so will solve the aforementioned

convergence issue. Thus, it is proposed to modify the problem

to incorporate the effect of calibration.

II. IMPROVING THE THEORY

We now consider that prior to the actual measure from times

0 to τ , a calibration measure was done using an integration

time τc (τc ≥ τ) and its result is subtracted to the current

measure. Let Tc (Tc ≥ τc) be the elapsed time from the

beginning of the calibration to the beginning of the current



measure. Then, the induced random error is:

ε = 〈δs〉 = 1

τ

∫ τ

0

δs(t) dt− 1

τc

∫ −Tc+τc

−Tc

δs(t) dt (3)

The demonstration for (2) must then be adapted. δs is first

expressed as a Fourier series:

δs(t) =
∞∑
i=1

√
2S(ωi) δω cos (ωit+ δi) (4)

where the δi are uncorrelated uniform random variables dis-

tributed the interval [0, 2π]. Then:

ε =
∞∑
i=1

√
2S(ωi) δω I(f)

with:

I(ωi) =
1

τ

∫ τ

0

cos (ωi t+ δi) dt

− 1

τc

∫ −Tc+τc

−Tc

cos (ωi t+ δi) dt

Then, since E[ε] = 0:

σ2
ε = E

[
ε2
]
= E

⎡
⎣
( ∞∑

i=1

√
2S(ωi) δω I(ωi)

)2
⎤
⎦

= E

⎡
⎣ ∞∑

i=1

∞∑
j=1

2 δω
√
S(ωi)S(ωj) I(ωi) I(ωj)

⎤
⎦

Since the δi are uncorrelated:

∀ i �= j, E[I(ωi) I(ωj)] = E[I(ωi)] E[I(ωj)] = 0

So, considering the limit δω −→ 0:

σ2
ε =

∫ ∞

0

2S(ω) E
[I(ω)2] dω

E
[I(ω)2] is then computed as:

E
[I(ω)2] = 1

2π

∫ 2π

0

I(ω)2 dδ

Ultimately, it leads to:

σ2
ε =

∫ ∞

0

2S(ω)G

(
ω Tc,

τ

Tc
,
τc
Tc

)
dω (5)

with:

G(u, x, y) = 1
u2

[
1

x2

(
1− cos(ux)

)
+

1

y2

(
1− cos(u y)

)

− 1

x y

(
cos(u) + cos(u (1 + x− y))

− cos(u (1 + x))− cos(u (1− y))
)]

From (5), several remarks can be done. First, we note that

the aforementioned convergence issue is solved. In fact:

G

(
ωTc,

τ

Tc
,
τc
Tc

)
ω→0∼ 1

8

(
4Tc(Tc + τ − τc) + (τ − τc)

3
)
ω2

hence the integral converges as soon as S(ω)
ω→0
= O

(
1
ωα

)
with α < 3, which is always the case in practice. Besides,

the effect of the calibration can be observed. The way the

power spectral density is weighted and affects the resulting

standard deviation is depicted in Fig. 1. Be the calibration

taken into account or not, a second-order low-pass filter is

implemented by the averaging of the noise. Besides, ripples are

observed: frequencies that are multiple of 1/τ are nullified. In

addition, when calibration is considered, it creates in a second-

order high-pass filter. The lowest frequencies are absorbed

by the calibration. The lower the frequency, the better the

compensation. Calibration-related ripples are also observed:

for frequencies that are multiple of 1/T , the current measure

and the calibration one are in phase and cancel out.

Fig. 1. Frequency-dependant weighting of the noise power spectral density,
computed for τ = 1ms, τc = 10ms, Tc = 10 s.

One can also remark that the function G can be decomposed

as:

G(u, x, y) = Gx(u, x) +Gy(u, x)−Gx,y(u, x, y)

with:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Gx(u, x) =
1

(ux)2

(
1− cos(ux)

)
Gy(u, x) =

1
(u y)2

(
1− cos(u y)

)
Gx,y(u, x, y) =

1
u2 x y

(
cos(u) + cos(u (1 + x− y))

− cos(u (1 + x))− cos(u (1− y))
)

On one hand, Gx(u, x) and Gy(u, x) describe the impact

of noise during respectively the actual measurement and the

calibration one, independently from one another. In fact,∫∞
0
2S(ω)Gx

(
ω Tc,

τ
Tc

)
dω gives the corresponding vari-

ance as expressed by (2). On the other hand, Gx,y(u, x, y)
corresponds to the impact of the correlation between those

two measurements, and thus to how the calibration allows to

reduce the variance in the obtained error.

III. PRACTICAL FORMULA

Using (5), the impact of pure white, pure flicker noise and

low-pass filtered white noise can be computed. The obtained

results are as follow.



• For white noise S(ω) = A:

σ2
ε = A · π ·

(
1

τ
+

1

τc

)
(6)

This result matches what could be expected. During cali-

bration and current measures, the noise leads to errors with

variances Aπ
τc

and Aπ
τ (as found in [8]). Since they are

produced by white noise, these errors are uncorrelated, hence

their variances add up.
• For flicker noise S(ω) = A

ω :

σ2
ε = A · ζ

(
τ

Tc
,
τc
Tc

)
(7)

with:

ζ(x, y) =
1

xy

(
(1 + x)2ln(1 + x)

+ (1− y)2ln(1− y)

− (1 + x− y)2ln(1 + x− y)
)

− ln(x y) (8)

Note that this formula cannot be used for y = 1 (i.e. when

the actual measurement directly follows the calibration one).

The suitable formula can be computed either from (5), either

from (8) by computing lim
y→1

ζ(x, y). It leads to:

ζ(x, 1) =
1

x

(
(1 + x)2ln(1 + x)− x2ln(x)

)
− ln(x) (9)

The obtained normalized variance σ2
ε/A is depicted on

Fig. 2.

Fig. 2. Obtained normalized variance σ2
ε/A with a noise of power spectral

density S(ω) = A
ω

• For flicker noise S(ω) = A
ωα , with α ∈ ]0, 2[ \{1}:

σ2
ε = 2A · Γ(−1− α) sin

(α π

2

)

·
[
τα−1
c + τα−1

+
T 1+α
c

τ τc
ξ

(
τ

Tc
,
τc
Tc

, 1 + α

)]
(10)

with:

ξ(x, y, a) = 1 + (1 + x− y)a − (1 + x)a − (1− y)a (11)

Typical obtained normalized variances σ2
ε/(ATα−1

c ) are

depicted on Fig. 3 and Fig. 4, using respectively α = 0.9
and α = 1.2.

Fig. 3. Obtained normalized variance σ2
ε/(ATα−1

c ) with a noise of power
spectral density S(ω) = A

ωα , with α = 0.9

Fig. 4. Obtained normalized variance σ2
ε/(ATα−1

c ) with a noise of power
spectral density S(ω) = A

ωα , with α = 1.2

The figure Fig. 5 depicts how the flicker noise increases

the variance of the error as the time since calibration passes,

depending on its frequency exponent α.

• For white noise filtered by a first-order low-pass filter

with a cutoff angular frequency ω0 (as discussed in [7]),

S(ω) = A

1+
(

ω
ω0

)2 :

σ2
ε = A · π ω0 · χ

(
τ ω0, τc ω0, (Tc − τc)ω0

)
(12)



Fig. 5. Evolution of the variance σ2
ε due to different flicker noises

S(ω) = A
ωα as the time since calibration Tc increases, considering the case:

τ = τc = 1ms

with:

χ(a, b, c) =
1

a
+

1

a2
(
e−a − 1

)
+
1

b
+

1

b2
(
e−b − 1

)
−e−c · 1− e−a

a
· 1− e−b

b
(13)

We can note that, as expected, the two first lines in the

expression of χ corresponds to the impact of the considered

noise on the actual measurement and the calibration one

respectively, independently from one another. In fact, applying

(2) to the given power spectral density S leads to a variance

for a single measurement:

σ2
ε,x = A · π

τ2

(
τ +

e−τ ω0 − 1

ω0

)

= A · π ω0 ·
(
1

a
+

1

a2
(
e−a − 1

))

The third line in the expression of χ represents the reduction

of the error thanks to calibration. It decreases exponentially

as the time from the end of the calibration measurement to

the beginning of the actual measurement increases. It also

decreases as the integration times increases.

Besides, one can notice that when considering the limit

case ω0 → ∞ (hence a, b, c→∞), we find again what

was obtained for the white noise (6). In fact, it gives:

χ(a, b, c)
ω0→∞∼ 1

a +
1
b ; and so: σ2

ε
ω0→∞∼ A · π ·

(
1
τ +

1
τc

)
.

IV. IMPLEMENTATION

Since 0 < τ ≤ τc ≤ Tc, ζ(x, y) and ξ(x, y, a) shall be com-

puted for 0 < x ≤ y ≤ 1 and a ∈ ]1, 3[ \{2}. Some precau-

tions should be taken. In fact, depending on the application,

one may consider for the elapsed time Tc since calibration to

reach months or even years. This may be the case for example

for biomedical implanted chips. In such conditions, x = τ/Tc

and y = τc/Tc become extremely small. Then, in (8), (9) and

(11), subtracted terms cancel out to give results that are far

bellow the initial values.

However, the computing software has a finite resolution,

limited by the number of bits b of the significand. With double

precision (i.e. 64-bits floats), which is the case in MATLAB:

b = 52. As a result, a value v is stored with a maximal error

εmax(v) = 2−�b+2−log2(v)� ≤ v
2b+1 . So computing v − w can

lead to a relative error up to v
v−w

1
2b+1 that might be too large

if v ≈ w.

Thus, for low values of x and potentially y, using the

original, ideal formulas (8), (9) and (11) may lead to erroneous

results. In such cases, it is required to use an alternative

implementation. To do so, these formulas are approximated

using Taylor series. Then to ensure reliable implementations

for ζ(x, y) and ξ(x, y, a), the error associated with each

possible formula is estimated. Depending on the case, it is

the error due to the approximation, the error due to the finite

resolution for the manipulated numbers, or a sum of both. The

formula providing the least error is used.

A. Implementation of ζ(x, 1)

The original formula for x 
→ ζ(x, 1) was:

ζ(x, 1) =
1

x

(
(1 + x)2ln(1 + x)− x2ln(x)

)
− ln(x) (9)

Due to the aforementioned resolution issue, this formula is

associated with a bit-related error:

ε(9) ≤ 1

2b+1x

However, when x� 1:

ζ(x, 1) = 1− ln(x) + (3/2− ln(x))x+O(x2)

Thus, one can use the approximation:

ζ(x, 1) ≈ 1− ln(x) (14)

with an error:

ε(14) ≈
(
3

2
− ln(x)

)
x

So the implementation for ζ(x, 1) shall use (14) when(
3
2 − ln(x)

)
x < 1

2b+1x
, and (9) else.

The next sections use the same reasoning that will not be

detailed again. Only the formulas (i) and the associated errors

ε(i) will be provided. For each situation, the formula (i) to use

is the one providing the minimal ε(i).

B. Implementation of ζ(x, y), y < 1

The original formula for (x, y) 
→ ζ(x, y) was:

ζ(x, y) =
1

xy

(
(1 + x)2ln(1 + x)

+ (1− y)2ln(1− y)

− (1 + x− y)2ln(1 + x− y)
)

− ln(x y) (8)

This formula is associated with a bit-related error:

ε(8) ≤

⎧⎪⎨
⎪⎩

1
2b+1 x y

, if: y − x < 2−b−2

1
2b+1 x y

(1− (1− y)(1− y + (6− 4y) ln(1− y))) ,

else



For x� 1, (8) becomes:

ζ(x, y) ≈ 1 +
2y − x− 2

y
ln(1− y)− ln(x y) (15)

with a maximal error:

ε(15) ≈ x2

3 (1− y)
+

1

2b+1 y

For x ≤ y � 1:

ζ(x, y) ≈ 3 + x− y − ln(x y) (16)

with an error:

ε(16) ≈ (y − x)2 + x y / 2

3

Fig. 6. Used formula for computing ζ(x, y), depending on x and y

C. Implementation of ξ(x, y, a), y < 1

The original formula for (x, y, a) 
→ ξ(x, y, a) was:

ξ(x, y, a) = 1 + (1 + x− y)a − (1 + x)a − (1− y)a (11)

Due to the finite resolution of the computing software, it is

associated with an error:

ε(11) ≤
{

4
2b

if 1 < a < 2
1
2b

else

When x� 1:

ξ(x, y, a) ≈ −ax+ (1 + x− y)a − (1− y)a (17)

with a maximal error:

ε(17) ≈ a (a− 1)
x2

2
+

1

2b+1
(a+ 2)(1− y)a−1

When also x� 1− y < 1:

ξ(x, y, a) ≈ ((1− y)a−1 − 1
)
a x (18)

with a maximal error:

ε(18) ≈ a (a− 1)
∣∣(1− y)a−2 − 1

∣∣ x2

2
+

a

2b+2

Also, for x ≤ y � 1:

ξ(x, y, a) ≈ −a (a− 1)x y (19)

with an error:

ε(19) ≈ a (a− 1) |a− 2| xy
2

(
y − x+

(
1− a

3

) xy

2

)

Fig. 7. Used formula for computing ξ(x, y, a) with α = 0.9 (hence
a = 1.9), depending on x and y

Fig. 8. Used formula for computing ξ(x, y, a) with α = 1.2 (hence
a = 2.2), depending on x and y

D. Implementation of χ(a, b, c)

The original formula for (x, y, a) 
→ ζ(x, y) was:

χ(a, b, c) =
1

a
+

1

a2
(
e−a − 1

)
+
1

b
+

1

b2
(
e−b − 1

)
−e−c · 1− e−a

a
· 1− e−b

b
(13)

Though in previous sections, x � 1 and y � 1 corre-

sponded to typical cases that can be encountered in practice,

the cases a� 1 and b� 1 are less likely to occur. However,

for the sake of being as exhaustive as possible, we will discuss

the considerations concerning the implementation of χ in order

to handle such situations.



Concerning the first and second lines in the formula (13),

it has to be noticed that the formula:(
1

a
+

1

a2
(
e−a − 1

))
(20)

or equivalently:
e−a − 1 + a

a2
(20’)

is associated when a� 1 to a bit-related error:

ε(20) ≤ 1

2b+2 a2

Nevertheless, it can be approximated as:(
1

a
+

1

a2
(
e−a − 1

)) ≈ 1

2
(21)

with an approximating error:

ε(21) ≈ a

6

Thus, approximation (21) will be preferred for comput-

ing the term (20) when: a ≤ ( 3
2b+1

)1/3 ≈ 6.932 · 10−6 (with

b = 52).

Concerning the third line of in the formula (13), we remark

that:
1− e−a

a
(22)

is associated to an error:

ε(22) ≤ 1

2b+2 a

while it can be approximated as:

1− e−a

a
≈ 1 (23)

with an error:

ε(21) ≈ a

2

Thus, approximation (23) will be preferred for computing

the term (22) when: a ≤ 2−
b+1
2 ≈ 1.054 · 10−8 (with b = 52).

Note that no specific issue arise from c� 1 or c� 1.

V. CONCLUSION

In continuous-time integrator-based ADCs, the input-

referred noise is integrated along with the input signal, re-

sulting in a random Gaussian error. For a proper estimation of

its standard deviation, the calibration process of the converter

must be taken into account. The results are in fact highly

dependent on both the integration time and the elapsed time

since calibration. Here, it has been assumed that the calibration

consists in a simple measure whose result is subtracted to the

current measure. The corresponding theory has been developed

and led to formulas for computing the effect of white noise,

flicker noise and low-pass filtered white noise on the accuracy

of the converter. Using them requires some programming

precautions, but the latter have been addressed.
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