PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of sliding surface on the performances of adaptive sliding mode slip ratio controller for a HEV

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Slip ratio control of a ground vehicle is an important concern for the development of antilock braking system (ABS) to avoid skidding when there is a transition of road surfaces. In the past, the slip ratio models of such vehicles were derived to implement ABS. It is found that the dynamics of the hybrid electric vehicle (HEV) is nonlinear, time varying and uncertain as the tire-road dynamics is a nonlinear function of road adhesion coefficient and wheel slip. Sliding mode control (SMC) is a robust control paradigm which has been extensively used successfully in the development of ABS of a HEV. But the SMC performance is influenced by the choice of sliding surface. This is due to the discontinuous switching of control force arising in the vicinity of the sliding surface that produces chattering. This paper presents a detailed study on the effects of different sliding surfaces on the performances of sliding mode based adaptive slip ratio control applied to a HEV.
Rocznik
Strony
187--203
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wzory
Twórcy
autor
  • Department of Electrical Engineering, Indus College of Engineering, Bhubaneswar, BPUT, Odisha, India
autor
  • Department of Electrical Engineering, National Institute of Technology, Rourkela, Odisha, India
Bibliografia
  • [1] B. Subudhi and S. S. Ge: Sliding mode observer based adaptive slip ratio control for electric and hybrid vehicles.IEEE Trans. Intelligent Transportations, 13(4) (2012), 1617-1626.
  • [2] C. Unsal and P. Kachroo: Sliding mode measurement feedback control for antilock braking systems. IEEE Trans. Control Systems Technol., 7(2), (1999), 271-281.
  • [3] K. R. Buchholz: Reference input wheel slip tracking using sliding mode control. SAE World Congress, Detroit, Michigan, USA, ISSN 0148-7191, (2002).
  • [4] J. R. Layne, K. M. Passino and S. Yurkovich: Fuzzy learning control for antiskid braking systems. IEEE Trans. Control Systems Technology, 1(2), (1993), 122-129.
  • [5] F. Mauer: Fuzzy learning control for antiskid braking systems. IEEE Trans. FuzzySystems Technology, 3 (1995), 381-388.
  • [6] P. Khatun, C. M. Bingam, N. Schofield and P. H. Mellor: Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems. IEEE Trans on Vehicular Technology, 54(2), (2005), 486-494.
  • [7] C. M. Lin and C. F. Hsu: Neural network hybrid control for antilock braking systems. IEEE Trans. Neural Networks, 14(2), (2003), 351-359.
  • [8] S. Semmler, R. Isermann, R. Schwarz and P. Rieth: Wheel slip control for antilock braking systems using brake-by-wire actuators. SAE Technical Papers, DOI: 10.4271/2003-01-0325, (2003).
  • [9] C. Mi, H. Lin and Y. Zhang: Iterative learning control of antilock braking of electric and hybrid vehicles. IEEE Trans. Vehicular Technology, 54(2), (2005), 486-494.
  • [10] J. J. Slotine and W. Li: Applied Nonlinear Control. Prentice Hall Int. Editions, 1991.
  • [11] P. Kachroo and M. Tomizuk: Integral action for chattering reduction and error convergence in sliding mode control. American Control Conference, Chicago, USA, (1992), 867-870. pp.867-870, June 1992.
  • [12] V. Utkin: Variable structure systems with sliding modes. IEEE Trans. on AutomaticControl, 22 (1977), 212-222.
  • [13] K. D. Young, V. Utkin and U. Ozgunur: A control engineer’s guide to sliding mode control. IEEE Trans. on Control Systems Technology, 7(3), (1999), 328-342.
  • [14] J. Y. Wong: Theory of Ground Vehicles. Wiley, New York, 4th edition.
  • [15] T. Shim, S. Ch ang and S. Lee: Investigation of sliding-surface design of sliding mode controller in antilock braking systems. IEEE Trans. on Vehicular Technology, 57(2), (2008), 747-759.
  • [16] B. K. Dash and B. Subudhi: Comparison of two controllers for directional control of a hybrid electric vehicle. Archives of Control Sciences, 22(2), (2012), 125-149.
  • [17] O. T. C. Nyandoro J. O. Pedro, B. Dwolatzky and O. A. Dahunsi: State feedback based linear slip control formulation for vehicular antilock braking system. Proc. of the World Congress on Engineering 2011, I WCE London, U.K., (2011).
  • [18] L. Austin and D. Murrey: Recent advances in antilock braking systems and traction control systems. Proc. of the Institute of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214 (2000), 625-638.
  • [1] B. Subudhi and S. S. Ge: Sliding mode observer based adaptive slip ratio control for electric and hybrid vehicles.IEEE Trans. Intelligent Transportations, 13(4) (2012), 1617-1626.
  • [2] C. Unsal and P. Kachroo: Sliding mode measurement feedback control for antilock braking systems. IEEE Trans. Control Systems Technol., 7(2), (1999), 271-281.
  • [3] K. R. Buchholz: Reference input wheel slip tracking using sliding mode control. SAE World Congress, Detroit, Michigan, USA, ISSN 0148-7191, (2002).
  • [4] J. R. Layne, K. M. Passino and S. Yurkovich: Fuzzy learning control for antiskid braking systems. IEEE Trans. Control Systems Technology, 1(2), (1993), 122-129.
  • [5] F. Mauer: Fuzzy learning control for antiskid braking systems. IEEE Trans. FuzzySystems Technology, 3 (1995), 381-388.
  • [6] P. Khatun, C. M. Bingam, N. Schofield and P. H. Mellor: Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems. IEEE Trans on Vehicular Technology, 54(2), (2005), 486-494.
  • [7] C. M. Lin and C. F. Hsu: Neural network hybrid control for antilock braking systems. IEEE Trans. Neural Networks, 14(2), (2003), 351-359.
  • [8] S. Semmler, R. Isermann, R. Schwarz and P. Rieth: Wheel slip control for antilock braking systems using brake-by-wire actuators. SAE Technical Papers, DOI: 10.4271/2003-01-0325, (2003).
  • [9] C. Mi, H. Lin and Y. Zhang: Iterative learning control of antilock braking of electric and hybrid vehicles. IEEE Trans. Vehicular Technology, 54(2), (2005), 486-494.
  • [10] J. J. Slotine and W. Li: Applied Nonlinear Control. Prentice Hall Int. Editions, 1991.
  • [11] P. Kachroo and M. Tomizuk: Integral action for chattering reduction and error convergence in sliding mode control. American Control Conference, Chicago, USA, (1992), 867-870. pp.867-870, June 1992.
  • [12] V. Utkin: Variable structure systems with sliding modes. IEEE Trans. on AutomaticControl, 22 (1977), 212-222.
  • [13] K. D. Young, V. Utkin and U. Ozgunur: A control engineer’s guide to sliding mode control. IEEE Trans. on Control Systems Technology, 7(3), (1999), 328-342.
  • [14] J. Y. Wong: Theory of Ground Vehicles. Wiley, New York, 4th edition.
  • [15] T. Shim, S. Ch ang and S. Lee: Investigation of sliding-surface design of sliding mode controller in antilock braking systems. IEEE Trans. on Vehicular Technology, 57(2), (2008), 747-759.
  • [16] B. K. Dash and B. Subudhi: Comparison of two controllers for directional control of a hybrid electric vehicle. Archives of Control Sciences, 22(2), (2012), 125-149.
  • [17] O. T. C. Nyandoro J. O. Pedro, B. Dwolatzky and O. A. Dahunsi: State feedback based linear slip control formulation for vehicular antilock braking system. Proc. of the World Congress on Engineering 2011, I WCE London, U.K., (2011).
  • [18] L. Austin and D. Murrey: Recent advances in antilock braking systems and traction control systems. Proc. of the Institute of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214 (2000), 625-638.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-296ecf91-6eda-4d66-bcce-ced711c12157
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.