PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Criteria Assessment of Injector Placement and theThermodynamic Effects of Fuel Injection and Combustion in an Engine Equipped with Direct Gasoline Injection System

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the analysis of the combustion and exhaust emission phenomena in an SI (spark ignition) engine equipped with direct gasoline injection system for various injector placement parameters in the combustion chamber. Achieving a good combustion process is shaped by the direct fuel injection process, of which parameters vary. This article focuses on the aspect of injector spatial and angular position in order to perform injection and achieve fuel combustion. The injector’s pseudo-optimal location has been presented along with several changed positions (27 configurations). The research was conducted asa simulation experiment using AVL FIRE software. The best injector position was selected based on the fuel atomization, injection and combustion process indicators. The pseudo-optimal location, was characterized by: 1) the largest inset in the combustion chambery = 7 mm, 2) the shortest distance from the spark plug: z = 9 mm, 3) the highest angle in relation tothe axis of the cylinder: alpha = 20 deg. The analysis of this impact results in the following conclusions: 1) the longitudinal change of the injector position is the most important value affecting changes in the fuel atomization and combustion indicators, 2) this change is about 3 times more significant than the change in the position of the injector’s distance from the axis of the spark plug and about 8 times more significant than the angle of the injector’s position.
Rocznik
Strony
223--231
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technolog
  • Poznan University of Technology
Bibliografia
  • 1. Zimmerman, N.; Wang, J. M.; Jeong, C.-H.; Wallace, J. S.; Evans, G. J. Environmental Science &Technology 2016, 50, 8385-8392.
  • 2. Pielecha, I. International Journal of Automotive Technology 2014, 15, 47-55.
  • 3. Fiengo, G.; di Gaeta, A.; Palladino, A.; Giglio, V. Common Rail System for GDI Engines; Springer London, 2012; pp 17-33.
  • 4. Zulkefli, M. H.; Mansor, M. R. A. The effect of injector position on direct injection hydrogen engine conditions. 2015.
  • 5. Chintala, V.; Subramanian, K. Energy 2013, 57, 709-721.
  • 6. Chen, Z.; Yao, C.; Yao, A.; Dou, Z.; Wang, B.;Wei, H.; Liu, M.; Chen, C.; Shi, J. Fuel 2017, 191, 150-163.
  • 7. Yan, B.; Wang, H.; Zheng, Z.; Qin, Y.; Yao, M. Applied Thermal Engineering 2018, 129, 199-211.
  • 8. Altin, I.; Bilgin, A. Applied Thermal Engineering 2015, 87, 678-687.
  • 9. Ravi, K.; Porpatham, E. Applied Thermal Engineering 2017, 110, 1051-1060.
  • 10. Gonca, G. Applied Thermal Engineering 2017, 127, 194-202.
  • 11. Gupta, S. K.; Mittal, M. Applied Thermal Engineering 2019, 148, 1440-1453.
  • 12. Nazemian, M.; Neshat, E.; Saray, R. K. Applied Thermal Engineering 2019, 152, 52-66.
  • 13. Ahmadi, R.; Hosseini, S. M. Applied Energy 2018, 213, 450-468.
  • 14. Krishnaraj, J.; Vasanthakumar, P.; Hariharan, J.; Vinoth, T.; Karthikayan, S. Materials Today: Proceedings 2017, 4, 7903-7910.
  • 15. Ranga, A. P. R.; Surnilla, G.; Thomas, J.; Sanborn, E.; Linenberg, M. Adaptive Algorithm for Engine Air- Fuel Ratio Control with Dual Fuel Injection Systems. SAE Technical Paper Series. 2017.
  • 16. Wiemann, S.; Hegner, R.; Atakan, B.; Schulz, C.; Kaiser, S. A. Fuel 2018, 215, 40-45.
  • 17. Akansu, S. O.; Tangöz, S.; Kahraman, N.; İlhak, M. İ.; Açıkgöz, S. International Journal of Hydrogen Energy 2017, 42, 25781-25790.
  • 18. García-Morales,J.; Cervantes-Bobadilla, M.; Escobar-Jimenez, R.; Gómez-Aguilar, J.; Olivares-Peregrino, V. International Journal of Hydrogen Energy 2017, 42, 25026-25036.
  • 19. Liu, K.; Li, Y.; Yang, J.; Deng, B.; Feng, R.; Huang, Y. Applied Energy 2018, 212, 13-32.
  • 20. Su, T.; Ji, C.; Wang, S.; Cong, X.; Shi, L. International Journal of Hydrogen Energy 2018, 43, 1902-1908.
  • 21. Kosmadakis, G.; Rakopoulos, D.; Rakopoulos, C. International Journal of Hydrogen Energy 2015, 40, 15088-15104.
  • 22. Ghadimi, P.; Yousefifard, M.; Nowruzi, H.Journal of Applied Fluid Mechanics 2016, 9, 2781-2790.
  • 23. Reitz, R. D.; Beale, J. C. Atomization and Sprays 1999, 9, 623-650.
  • 24. Sidorowicz, M.; Pielecha, I. Combustion Engines 2018, 172, 35-43.
  • 25. Maroteaux, F.; Saad, C. Energy 2015, 88, 515-527.
  • 26. Tan, J. Y.; Bonatesta, F.; Ng, H. K.; Gan, S. Applied Thermal Engineering 2016, 107, 936-959.
  • 27. Petrakides, S.; Butcher, D.; Pezouvanis, A.; Chen, R. Journal of Power Technologies 2018, 98 (5).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-296daca4-84cd-4b88-84d8-39dfca5e46ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.