PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new civil engineering material: normal temperature modified phosphogypsum embedded filler

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phosphogypsum (PG) is a by-product from the industry of phosphate fertilizer industry. Approximately 5 tonnes of PG are generated for per ton of phosphoric acid production. The accumulation of PG occupies huge amounts of land resources and results in serious environmental risks. In this study, a new civil engineering building material product, normal temperature-modified PG-embedded filler, was successfully prepared from original PG, supplemented by fly ash, desulfurized ash, quicklime and silica fume. The basic physical properties and microscopic hydration process of the product were systematically studied. To further ensure its environmental safety, the leaching performance of the product was also analyzed. The final research results showed that, the heavy metals in PG, such as Pb, Cd, Hg, As and Cr in PG, were undetected, and Cu, Zn, and Ni have no obvious pollution characteristics. However, the lixivium contents of P and Ba are 2372 mg/kg and 733.6 mg/kg, which can be considered as the particular pollutants. The best ratio of the embedded filler was: 65% original phosphogypsum, 20% Fly-ash, 6% desulfurized ash, 6% quicklime, 3% silica fume and right amount of water. The basic physical properties of the PG-embedded filler prepared met the Chinese technical specification: gypsum filler for cast-in-situ concrete hollow structure (JC/T 2472-2018). In addition, the test results of the leaching solution showed that all the heavy metals met the standard requirements. In a word, the performance of normal temperature-modified PG-embedded filler is satisfied and its production cost in this research is by far lesser than that of the same volume of reinforced concrete which has excellent application foreground.
Rocznik
Strony
76--88
Opis fizyczny
Bibliogr. 29 poz., fot., rys., wykr.
Twórcy
  • School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • Chongqing Hebang Building Materials Co. LTD, Chongqing 408100, China
  • Green Intelligence Environment School, Yangtze Normal University, Chongqing 408100, China
autor
  • School of Civil and Architectural Engineering, Yangtze Normal University, Chongqing 408100, China
Bibliografia
  • [1] Tayibi H, Choura M, Lopez FA, Alguacilet FJ, Delgado AL. Environmental impact and management of phosphogypsum. J Environ Man. 2009;90:2377–86.
  • [2] Rashad AM. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J Clean Prod. 2015;87:717–25.
  • [3] Yang L, Zhang Y, Yan Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. J Clean Prod. 2016;127:204–13.
  • [4] Shen W, Gan G, Dong R, Chen H, Tan Y, Zhou M. Utilization of solidified phosphogypsum as Portland cement retarder. J Mater Cycles Waste Manag. 2012;14:228–33.
  • [5] Shen Y, Qian J, Chai J, Fan Y. Calcium sulphoaluminate cements mad with phosphogypsum: Production issues and material properties. Cement Concr Comp. 2014;48:67–74.
  • [6] Taher MA. Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resour Conserv Recy. 2007;52:28–38.
  • [7] Mun KJ, Hyoung WK, Lee CW, So SY, Soh YS. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. Constr Build Mater. 2007;21:1342–50.
  • [8] Garg M, Minocha AK, Jain N. Environment hazard mitigation of wastegypsum and chalk: use in construction materials. Constr Build Mater. 2011;25(201):944–9.
  • [9] Zhou J, Yu D, Shu Z, Li T, Chen Y, Wang Y. A novel two-step hydration process of preparing cement-free non-fired bricks from waste phosphogypsum. Constr Build Mater. 2014;73:222–8.
  • [10] Zhou J, Gao H, Shu Z, Wang Y, Yan C. Utilization of waste phos-phogypsum to prepare non-fired bricks by a novel hydration-recrystallization process. Constr Build Mater. 2012;34:114–9.
  • [11] Ma B, Wenda Lu, Ying Su, Li Y, Gao C, He X. Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum. J Clean Prod. 2018;195:396–405.
  • [12] Sheng Z, Zhou J, Shu Z, Yakubu Y, Chen Y, Wang W. Calcium sulfate whisker reinforced non-fired ceramic tiles prepared from phosphogypsum. Boletín de la Sociedad Española de Cerámica y Vidrio. 2018;57:73–8.
  • [13] Alam I, Ameen MA, Rehman F. Partial replacement of cement byphosphogypsum in concrete. North Asian Int Res J Sci Eng IT. 2015;2:1–11.
  • [14] Huang Y, Lu J, Chen F, Shui Z. The chloride permeability of per-sulphated phosphogypsum-slag cement concrete. J Wuhan Univ Technol Mater Sci Ed. 2016;5:1031–7.
  • [15] Nigade S, Bagade M. An experimental investigation of partial replacement of cement by various percentage of phosphogypsum in cement concrete with different water cement ratio. Int J Innov Sci Eng Technol. 2015;3:347–9.
  • [16] Carmeis Filho CA, Penn CJ, Crusciol CAC, Calonego JC. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions. Agr Ecosyst Environ. 2017;241:11–23.
  • [17] Nisti MB, Saueia CR, Malheiro LH, Groppo GH, Mazzilli BP. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum. J Environ Radioact. 2015;144:120–6.
  • [18] National Bureau of Statistics (China) The situation of national real estate development investment and sales in China [EB/OL]. http://www.stats.gov.cn/tjsj/zxfb/202001/t20200117_1723389.html. Accessed 17 Jan 2020.
  • [19] Gijbels K, Nguyen H, Kinnunen P, Schroeyers W, Pontikes Y, Schreurs S, Illikainen M. Feasibility of incorporating phospho-gypsum in ettringite-based binder from ladle slag. J Clean Prod. 2019;237:1–10.
  • [20] Gijbels K, Iacobescu RI, Pontikes Y, Schreurs S, Schroeyers W. Alkali-activated binders based on ground granulated blast furnace slag and phosphogypsum. Constr Build Mater. 2019;215:371–80.
  • [21] Park SM, Jang JG, Lee NK, Lee HK. Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cement Concr Res. 2016;89:72–9.
  • [22] Venkatarama Reddy BV, Gourav K. Strength of limefly ash compacts using different curing techniques and gypsum additive. Mater Struct. 2011;44:1793–808.
  • [23] LinYang YunYan, Zhihua Hu. Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Constr Build Mater. 2013;44:600–6.
  • [24] Tian T, Yan Y, Zhihua Hu, Yuanyuan Xu, Chen Y, Shi J. Utilization of original phosphogypsum for the preparation of foam concrete. Constr Build Mater. 2016;115:143–52.
  • [25] Xue S, Li M, Jiang J, Millar GJ, Li C, Kong X. Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics. J Environ Sci. 2019;77:1–10.
  • [26] Dutta RK, Khatri VN, Panwar V. Strength characteristics of fly ash stabilized with lime and modified with phosphogypsum. J Build Eng. 2017;14:32–40.
  • [27] Huang X, Zhao X, Bie S, Yang C. Hardening performance of phosphogypsum-slag-based material. Proc Environ Sci. 2016;31:970–6.
  • [28] Wang C-Q, Lin X-Y, Mei X-D, Luo X-G. Performance of non-fired bricks containing oil-based drilling cuttings pyrolysis residues of shale gas. J Clean Prod. 2019;206:282–96.
  • [29] Shu J, Liu R, Liu Z, Chen H, Jun Du, Tao C. Solidification/stabili-zation of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO. J Hazard Mater. 2016;317:267–74.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-296d11c4-3325-4263-83dd-1660d3a4f171
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.