Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Deep learning is widely used in remaining useful life (RUL) prediction because it does not require prior knowledge and has strong nonlinear fitting ability. However, most of the existing prediction methods are point prediction. In practical engineering applications, confidence interval of RUL prediction is more important for maintenance strategies. This paper proposes an interval prediction model based on Long Short-Term Memory (LSTM) and lower upper bound estimation (LUBE) for RUL prediction. First, convolutional auto-encode network is used to encode the multi-dimensional sensor data into one-dimensional features, which can well represent the main degradation trend. Then, the features are input into the prediction framework composed of LSTM and LUBE for RUL interval prediction, which effectively solves the defect that the traditional LUBE network cannot analyze the internal time dependence of time series. In the experiment section, a case study is conducted using the turbofan engine data set CMAPSS, and the advantage is validated by carrying out a comparison with other methods.
Czasopismo
Rocznik
Tom
Strony
art. no. 165811
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Department of Computer, University of Electronic Science and Technology of China, Zhongshan Institute, China
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
autor
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
autor
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
autor
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
Bibliografia
- 1. Akbari M, Kabir H M D, Khosravi A, Nasirzadeh F. Ann-based lube model for interval prediction of compressive strength of concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering 2021: 1-11, https://doi.org/10.1007/s40996-021-00684-x.
- 2. Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence 2017; 39(12): 2481-2495, https://doi.org/10.1109/TPAMI.2016.2644615.
- 3. Chen C, Lewis FL, Li B. Homotopic policy iteration-based learning design for unknown linear continuous-time systems. Automatica 2022; 138:110153, https://doi.org/10.1016/j.automatica.2021.110153.
- 4. Chen C, Lu N, Jiang B, Zhu Z H. Prediction interval estimation of aeroengine remaining useful life based on bidirectional long short-term memory network. IEEE Transactions on Instrumentation and Measurement 2021; 70: 1-13, https://doi.org/10.1109/TIM.2021.3126006.
- 5. Chen C, Xie L, Jiang Y, Xie K, Xie S. Robust Output Regulation and Reinforcement Learning-Based Output Tracking Design for Unknown Linear Discrete-Time Systems. IEEE Transactions on Automatic Control 2023; 68:2391–2398, https://doi.org/10.1109/TAC.2022.3172590.
- 6. Chen X, Xiao H, Guo Y, Kang Q. A multivariate grey RBF hybrid model for residual useful life prediction of industrial equipment based on state data. International Journal of Wireless and Mobile Computing 2016; 10(1): 90-96, https://doi.org/10.1504/IJWMC.2016.075230.
- 7. Dong L, Zhou W, Zhang P, Liu G, Li W. Short-term photovoltaic output forecast based on dynamic bayesian network theory. Proceedings of the CSEE 2013; 33(S1): 38-45.
- 8. Khosravi A, Nahavandi S, Creighton D, Atiya A F. Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE transactions on neural networks 2010; 22(3): 337-346, https://doi.org/10.1109/TNN.2010.2096824.
- 9. Kim Y. Convolutional neural networks for sentence classification. Eprint Arxiv 2014, https://doi.org/10.3115/v1/D14-1181.
- 10. Kobayashi K, Kaito K, Lethanh N, A bayesian estimation method to improve deterioration prediction for infrastructure system with markov chain model. International Journal of Architecture, Engineering and Construction 2012; 1(1): 1-13, https://doi.org/10.7492/IJAEC.2012.001.
- 11. Kong Z, Cui Y, Xia Z, Lv H. Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics. Applied Sciences 2019; 9(19): 4156, https://doi.org/10.3390/app9194156.
- 12. Lee B H. Bootstrap Prediction Intervals of Temporal Disaggregation. Stats 2022; 5(1): 190-202, https://doi.org/10.3390/stats5010013.
- 13. Li J, Li X, He D. A directed acyclic graph network combined with cnn and lstm for remaining useful life prediction. IEEE Access 2019; 7: 75464-75475, https://doi.org/10.1109/ACCESS.2019.2919566.
- 14. Li X, Ding Q, Sun J Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering & System Safety 2018; 172: 1-11, https://doi.org/10.1016/j.ress.2017.11.021.
- 15. Li X, Xu Y, Li N, Lei Y. Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks. IEEE/CAA Journal of Automatica Sinica 2022; 10(1): 121-134, https://doi.org/10.1109/JAS.2022.105935.
- 16. Lyu Y, Gao J, Chen C, Jiang Y, Li H, Chen K, Zhang Y. Joint model for residual life estimation based on Long-Short Term Memory network. Neurocomputing 2020; 410: 284-294, https://doi.org/10.1016/j.neucom.2020.06.052.
- 17. Lyu Y, Jiang Y, Zhang Q, Chen C. Remaining useful life prediction with insufficient degradation data based on deep learning approach. Eksploatacja i Niezawodność 2021; 23(4): 745-756, https://doi.org/10.17531/ein.2021.4.17.
- 18. Lyu Y, Zhang Q, Wen Z, Chen A. Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation. Mathematics 2022; 10(24): 4647, https://doi.org/10.3390/math10244647.
- 19. Michelucci U. An introduction to autoencoders. 2022, https://doi.org/10.1007/978-1-4842-8020-1_9.
- 20. Pang X, Zhao Z, Wen J, Jia J, Shi Y, Zeng J, Dong Y. An interval prediction approach based on fuzzy information granulation and linguistic description for remaining useful life of lithium-ion batteries. Journal of Power Sources 2022; 542: 231750, https://doi.org/10.1016/j.jpowsour.2022.231750.
- 21. Peng W, Ye Z S, Chen N. Bayesian deep-learning-based health prognostics towards prognostics uncertainty. IEEE Transactions on Industrial Electronics 2020; 67: 2283-2293, https://doi.org/10.1109/TIE.2019.2907440.
- 22. Sateesh B G, Zhao P, Li X L. Deep convolutional neural network based regression approach for estimation of remaining useful life. in International conference on database systems for advanced applications. Springer 2016; pp. 214–228, https://doi.org/10.1007/978-3-319-32025-0_14.
- 23. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation modeling for aircraft engine run-to-failure simulation. in 2008 International Conference on Prognostics and Health Management 2008; pp.1–9, https://doi.org/10.1109/PHM.2008.4711414.
- 24. Sharghi E, Paknezhad N J, Najafi H. Assessing the effect of emotional unit of emotional ANN (EANN) in estimation of the prediction intervals of suspended sediment load modeling. Earth Science Informatics 2021; 14(1): 201-213, https://doi.org/10.1007/s12145-020-00567-1.
- 25. Sheng C, Zhao J, Wang W, Leung H. rediction intervals for a noisy nonlinear time series based on a bootstrapping reservoir computing network ensemble. IEEE Transactions on neural networks and learning systems 2013; 24(7): 1036-1048, https://doi.org/10.1109/TNNLS.2013.2250299.
- 26. Shrivastava N A, Khosravi A, Panigrahi B K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines. IEEE Transactions on Industrial Informatics 2015; 11(2): 322-331, https://doi.org/10.1109/TII.2015.2389625.
- 27. Wang X, Ghidaoui M S, Lin J. Confidence interval localization of pipeline leakage via the bootstrap method. Mechanical Systems and Signal Processing 2022; 167: 108580, https://doi.org/10.1016/j.ymssp.2021.108580.
- 28. Wang Y, Tang H, Wen T, Ma J. A hybrid intelligent approach for constructing landslide displacement prediction intervals. Applied Soft Computing 2019; 81: 105506, https://doi.org/10.1016/j.asoc.2019.105506.
- 29. Wu Y K, Su P E, Wu T Y, Hong J S, Hassan M Y. Probabilistic wind-power forecasting using weather ensemble models. IEEE Transactions on Industry Applications 2018; 54(6): 5609-5620, https://doi.org/10.1109/TIA.2018.2858183.
- 30. Zhang Y, Xiong R, He H, Pecht M G. Long short-term memory recurrent neural network for remaining useful life prediction of lithiumion batteries. IEEE Transactions on Vehicular Technology 2018; 67(7): 5695-5705, https://doi.org/10.1109/TVT.2018.2805189.
- 31. Zhou M, Wang B, Guo S, Watada J. Multi-objective prediction intervals for wind power forecast based on deep neural networks. Information Sciences 2021; 550: 207-220, https://doi.org/10.1016/j.ins.2020.10.034.
- 32. Zhu R, Chen Y, Peng W, Ye Z S. Bayesian deep-learning for RUL prediction: An active learning perspective. Reliability Engineering & System Safety 2022; 228: 108758, https://doi.org/10.1016/j.ress.2022.108758.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-296cb291-5e65-4f20-93d2-9ad041b0b405