Identyfikatory
Warianty tytułu
Magnetronowo napylane powłoki hydroksyapatytu na nanopręty tlenku tytanu wytworzone w roztworze alkalicznym
Języki publikacji
Abstrakty
Hydroxyapatite (HA) is a material with outstanding biocompatibility. It is chemically similar to natural bone tissue, and has therefore been favored for use as a coating material for dental and orthopedic implants. In this study, RF magnetron sputtering was applied for HA coating. And Alkali treatment was performed in a 5 M NaOH solution at 60°C. The coated HA thin film was heat-treated at a range of temperatures from 300 to 600°C. The morphological characterization and crystal structures of the coated specimens were then obtained via FE-SEM, XRD, and FT-IR. The amorphous thin film obtained on hydrothermally treated nanorods transformed into a crystalline thin film after the heat treatment. The change in the phase transformation, with an enhanced crystallinity, showed a reduced wettability. The hydrothermally treated nanorods with an amorphous thin film, on the other hand, showed an outstanding wettability. The HA thin film perpendicularly coated the nanorods in the upper and inner parts via RF magnetron sputtering, and the FT-IR results confirmed that the molecular bonding of the coated film had an HA structure.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1319--1322
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, Republic of Korea
autor
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, Republic of Korea
Bibliografia
- [1] B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao, X. D. Zhang, J. Mater. Sci. Mater. Med. 13, 457 (2002).
- [2] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq, Dent. Mater. 23, 844 (2007).
- [3] R. M. Pilliar, Medical Device Materials, 8-22 (2004).
- [4] J. L. Ong, D. C. Chan, Crit. Rev. Biomed. Eng. 28, 667 (2000).
- [5] R. A. Surmenev, M. A. Surmeneva, A. A. Ivanova, Acta Biomater. 10, 557 (2014).
- [6] J. G. Wolke, K. van Dijk, H. G. Schaeken, K. de Groot, J. a Jansen, J. Biomed. Mater. Res. 28, 1477 (1994).
- [7] K. Ozeki, T. Yuhta, Y. Fukui, H. Aoki, Surf. Coat. Technol. 160, 54 (2002).
- [8] S.-R. Cho, H.-G. Cho, J. Korean Chem. Soc. 57, 432 (2013).
- [9] D. K. Pattanayak, S. Yamaguchi, T. Matsushita, T. Kokubo, J. Mater. Sci. Mater. Med. 22, 1803 (2011).
- [10] S. Saber-Samandari, K. Alamara, S. Saber-Samandari, K. A. Gross, Acta Biomater. 9, 9538 (2013).
- [11] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007).
- [12] J.-U. Kim, Y.-H. Jeong, and H.-C. Choe, Thin Solid Films 520, 793 (2011).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-296c0e70-5a30-42dd-948b-9620d2b5547f