Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper establishes a strong law of large numbers and a central limit theorem for a sequence of dependent Bernoulli random variables modeled as a higher order Markov chain. The model under consideration is motivated by problems in quality control where acceptability of an item depends on the past k acceptability scores. Moreover, the model introduces dependence that may evolve over time and thus advances the theory for models with time invariant dependence. We establish explicit assumptions that incorporate this dynamic dependence and show how it enters into the limits describing long-term behavior of the system.
Czasopismo
Rocznik
Tom
Strony
121--139
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Statistics, Colorado State University, Fort Collins, CO 80521, USA
autor
- Department of Statistics, Colorado State University, Fort Collins, CO 80521, USA
autor
- Department of Statistics, Colorado State University, Fort Collins, CO 80521, USA
autor
- Department of Mathematics, Indian Institute of Technology, Ropar Bara Phool, Punjab 140001, India
Bibliografia
- [1] D. L. Antzoulakos and A. N. Philippou, Probability distribution functions of succession quotas in the case of Markov dependent trials, Ann. Inst. Statist. Math. 49 (1997), 531-539.
- [2] P. C. Badavas, Real-Time Statistical Process Control, Pearson, 1993.
- [3] J. Beran, Y. Feng, S. Ghosh and R. Kulik, Long-Memory Processes, Springer, 2013.
- [4] U. N. Bhat and R. Lal, Number of successes in Markov trials, Adv. Appl. Probab. 20 (1988), 677-680.
- [5] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting, Springer, 2016.
- [6] A. DasGupta, Asymptotic Theory of Statistics and Probability, Springer, 2008.
- [7] Z. Drezner and N. Farnum, A generalized binomial distribution, Comm. Statist. Theory Methods 22 (1993), 3051-3063.
- [8] P. Hall and C. C. Heyde, Martingale Limit Theory and Its Applications, Academic Press, New York, 1980.
- [9] C. C. Heyde, Asymptotics and criticality for a correlated Bernoulli process, Austral. New Zealand J. Statist., 46 (2004), 53-57.
- [10] C. C. Heyde and Y. Yang, On defining long-range dependence, J. Appl. Probab. 34 (1997), 939-944.
- [11] P. W. Holland and P. R. Rosenbaum, Conditional association and unidimensionality in monotone latent variable models, Ann. Statist. 14 (1986), 1523-1543.
- [12] B. James, K. James and Y. Qi, Limit theorems for correlated Bernoulli random variables, Statist. Probab. Lett. 78 (2008), 2339-2345.
- [13] S. Karmakar and A. Roy, Bayesian modelling of time-varying conditional heteroscedasticity, Bayesian Anal. 1 (2021), 1-29.
- [14] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, CRC Press, 2017.
- [15] R. Lyons, Strong laws of large numbers for weakly correlated random variables, Michigan Math. J. 35 (1988), 353-359.
- [16] A. E. Raftery, A model for high-order Markov chains, J. Roy. Statist. Soc. Ser. B 47 (1985), 528-539.
- [17] V. K. Rohatgi and A. K. Saleh, An Introduction to Probability and Statistics, Wiley, 2015.
- [18] V. Salnikov, M. T. Schaub and R. Lambiotte, Using higher-order Markov models to reveal flow-based communities in networks, Sci. Rep. 6 (2016), 1-13.
- [19] D. Singh and S. Kumar, Limit theorems for sums of dependent and non-identical Bernoulli random variables, Amer. J. Math. Management Sci. 39 (2020), 150-165.
- [20] D. Singh, S. Kumar and P. Vellaisamy, The limit theorems for a previous k-sum dependent model, J. Math. Anal. Appl. 487 (2020), art. 124004, 15 pp.
- [21] P. Vellaisamy and S. Sankar, A unified approach for modeling and designing attribute sampling plans for monitoring dependent production processes, Methodology Computing Appl. Probab. 7 (2005), 307-323
- [22] V. Ventura, C. Cai and R. E. Kass, Trial-to-trial variability and its effect on time-varying dependency between two neurons, J. Neurophysiology 94 (2005), 2928-2939.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-296bee7e-881e-4bfc-8d04-fd8b28006dcb