PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanisms of electrical conductivity, quantum capacity and negative capacitance effects in InSe (PTHQ) nanohybrid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we present findings on the syntheses and study of properties of InSe < PTHQ > nanohybrid. The introduction of guest component in GaSe matrix leads to an increase in inhomogeneities, which is clearly confirmed by the strengthening of the low-frequency horizontal branch of Nyquist diagrams. A constant magnetic field counteracts this effect and changes the behavior of the impedance hodograph at low frequencies to the opposite. Illumination leads to a colossal increase in quantum capacitance, which is clearly demonstrated in the Nyquist diagram. For the synthesized InSe < PTHQ > nanohybrid the interesting behavior of the current-voltage characteristic is reported. As a result of studies of the synthesized InSe < PTHQ > nanohybrid the effect of “negative capacity” is observed, the magnitude of which can be controlled by the electric field. Based on the constructed impedance model and proposed N-barrier model, the physical mechanisms of the investigated processes are suggested.
Rocznik
Strony
art. no. e139958
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Czestochowa University of Technology, Al. Armii Krajowej 17, Czestochowa, 42-200, Poland
  • Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
  • Czestochowa University of Technology, Al. Armii Krajowej 17, Czestochowa, 42-200, Poland
  • Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
  • Bohdan Khmelnytsky National University, blvd. Shevchnko 81, 18031, Cherkasy, Ukraine
  • Bohdan Khmelnytsky National University, blvd. Shevchnko 81, 18031, Cherkasy, Ukraine
  • Bohdan Khmelnytsky National University, blvd. Shevchnko 81, 18031, Cherkasy, Ukraine
  • Czestochowa University of Technology, Al. Armii Krajowej 17, Czestochowa, 42-200, Poland
autor
  • Czestochowa University of Technology, Al. Armii Krajowej 17, Czestochowa, 42-200, Poland
  • Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
Bibliografia
  • [1] R. Schlesinger, F. Bianchi, and S. Blumstengel, C. Christodoulou, R. Ovsyannikov, B. Kobin, and N. Koch, “Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning”, Nat. Commun., vol. 6, no. 1, pp. 7754(1–7), Apr. 2015, doi: 10.1038/ncomms7754.
  • [2] W.-Q. Kan, J. Yang, Y.-Y. Liu, and J.-F. Ma, “Series of inorganic-organic hybrid materials constructed from octamolybdates and metal-organic frameworks: Syntheses, structures, and physical properties”, Inorg. Chem., vol. 51, no. 21, pp. 11266–11278, 2012, doi: 10.1021/ic300134z.
  • [3] L. Dobrzycki and K.Woźniak, “1D vs 2D crystal architecture of hybrid inorganic-organic structures with benzidine dication”, J. Mol. Struct., vol. 921, no. 1–3, pp. 18–33, Dec. 2009, doi: 10.1016/j.molstruc.2008.12.027.
  • [4] P. Chabecki et al., “Functional energy accumulation, photo- and magnetosensitive hybridity in the GaSe-based hierarchical structures”, Energies, vol. 13, no. 17, pp. 4321(1–16), Aug. 2020, doi: 10.3390/en13174321.
  • [5] F. Ivashchyshyn, A. Pidluzhna, D. Calus, O. Hryhorchak, P. Chabecki, and O. Makarchuk, “Multivoltaic GaSe clathrate as new hybrid functional nanostructure”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, pp. e136726(1–5), 2021, doi: 10.24425/bpasts.2021.136726.
  • [6] I. Grygorchak et al., “Thermogalvanic and local field effects in SiO2 structure”, Appl. Nanosci., vol. 10, no. 12, pp. 4725–4731, May. 2020, doi: 10.1007/s13204-020-01447-2.
  • [7] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, “Generalized many-channel conductance formula with application to small rings”, Phys. Rev. B., vol. 31, no 10, pp. 6207–6215, May. 1985, doi: 10.1103/PhysRevB. 31.6207.
  • [8] G.V. Baryshnikov, R.L. Galagan, L.P. Shepetun, V.A. Litvin, and B.F. Minaev, “Synthesis and spectroscopic characterization of a new (aryl-SCN)n polymer: Polythiocyanatohydroquinone”, J. Mol. Struct., vol. 1096, pp. 15–20, Apr. 2015, doi: 10.1016/j.molstruc.2015.04.040.
  • [9] I.I. Grygorchak, “Intercalation: achievements, problems, outlook (Review)”, Phys. Chem. Solid State, vol. 2, no. 1, pp. 7–57, 2001.
  • [10] I. Dupliak et al., “Influence of optical radiation and magnetic field on the properties of InSe clathrate”, Ukr. J. Phys. Opt., vol. 21, no. 3, pp. 115–125, 2020, doi: 10.3116/16091833/21/3/115/2020.
  • [11] F. Ivashchyshyn, I. Grygorchak, T. Gordiyuk, R. Shvets, and Y. Kulyk, “Effect of lattice expansion degree on properties and electromagnetic field response of InSe, GaSe and clathrates on their basis”, East. Eur. J. Enterp. Technol., vol. 6, no. 11, pp. 48–56, 2015, doi: 10.15587/1729-4061.2015.56576.
  • [12] S. Luryi, “Quantum capacitance devices”, Appl. Phys. Lett., vol. 52, no. 6, pp. 501–503, 1988.
  • [13] Z. Stoinov, B. Grafov, B. Savvova-Stoinova, and V. Yelkin, Electrochemical Impedance, Nauka, Moskow, 1991, [in Russian].
  • [14] Impedance spectroscopy. Theory, experiment and application, eds. E. Barsoukov and J.R. Macdonald, Wiley interscience, Hoboken, Jew Jersey, 2005.
  • [15] F. Ivashchyshyn, I. Grygorchak, P. Stakhira, V. Cherpak, and M. Micov, “Nonorganic semiconductor Conductive polymer intercalate nanohybrids: Fabrication, properties, application”, Curr. Appl Phys., vol. 12, pp. 160–165, May 2012, doi: 10.1016/j.cap.2011.05.032.
  • [16] A. A. Lee, D. Vella, and A. Goriely, “Quantum capacitance modifies interionic interactions in semiconducting nanopores”, EPL (Europhys. Lett.), vol. 113, no. 3, pp. 38005(1–6), Mar. 2016, doi: 10.1209/0295-5075/113/38005.
  • [17] S. Kondrat and A. Kornyshev, “Superionic state in double-layer capacitors with nanoporous electrodes”, J. Phys.: Condens. Matter., vol. 23, pp. 2–10, 2010.
  • [18] C. Rochester, A. Sartor, G. Pruessner, and A.A. Kornyshev, “One dimensional double layer. The effect of size asymmetry of cations and anions on charge-storage in ultranarrownanopores – an Ising model theory”, Russ. J. Electrochem., vol. 53, no. 10, pp. 1165–1170, 2017.
  • [19] M. Klapchuk and I. Grygorchak, “The effect of additional offdiagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors”, Math. Model. Comput., vol. 5, no. 2, pp. 147–157, 2018, doi: 10.23939/mmc2018.02.147.
  • [20] M. Klapchuk and F.O. Ivaschyshyn, “Giant magnetoresistance effect in InSe?β -CD?FeSO4??clathrate”, Mathematical Modeling and Computing, vol. 7, no. 2, pp. 322–333, 2020.
  • [21] N.A. Penin, “Otricatel’naya emkost’ v poluprovodnikovykh stru kturakh”, FTP, vol. 30, no. 4, pp. 626–634, 1996, [in Russian].
  • [22] J. Bisquert, H. Randriamahazaka, and G. Garcia-Belmonte, “Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry”, Electrochim. Acta., vol. 51, no. 4, pp. 627–640, Jun. 2005, doi: 10.1016/j.electacta.2005.05.025.
  • [23] I. Mora-Seró et al., “Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells”, Nano Lett., vol. 6, no. 4, pp. 640–650, Jan. 2006, doi: 10.1021/nl052295q.
  • [24] I.I. Grygorchak, F.O. Ivashchyshyn, M.V. Tokarchuk, N.T. Pokladok, and O.V. Viznovych, “Modification of properties of GaSe < β -cyclodexterin > clathrat by synthesis in superposed electric and light-wave fields”, J. Appl. Phys., vol. 121, pp. 185501(1–7), May. 2017, doi: 10.1063/1.4983097.
  • [25] P. Kostrobij, I. Grygorchak, F. Ivashchyshyn, B. Markovych, O. Viznovych, and M. Tokarchuk, “Generalized electrodiffusion equation with fractality of space-time: Experiment and theory”, J. Phys. Chem. A, vol. 122, no. 16, pp. 4099–4110, Apr. 2018, doi: 10.1021/acs.jpca.8b00188.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29671e57-34ad-40a3-81aa-fb83a34d2834
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.