PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Purification of Mine Waters Using Lime and Aluminum Hydroxochloride

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of the scientific and technical literature shows that there are quite a few methods of mine water processing. Reagent methods can be considered as the most promising and economically expedient. Mine waters are characterized by a high content of hardness ions and sulfates. The concentration of sulfates varies between 5–35 mg-eq/dm3, hardness – 10–40 mg-eq/dm3. It has been established that effective purification of water from sulfates can be achieved with the use of lime and 5/6 aluminum hydroxochloride. The efficiency of the process depends on the doses and ratio of reagents. The degree of softening and purification of water from sulfates increases with an increase in the dose of aluminum coagulant within certain limits. When using 5/6 aluminum hydroxochloride, the efficiency of water purification from sulfates is quite high and small amounts of chlorides are introduced into the water with the coagulant.
Twórcy
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Bibliografia
  • 1. Amaral Filho, J., Azevedo, A., Etchepare, R., Rubio, J. 2016. Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation. International Journal of Mineral Processing, 149, 1–8. https://doi.org/10.1016/j.minpro.2016.01.012
  • 2. Bhuyan, S.C., Swain, A.K., Sahoo, A., Bhuyan, S.K. 2020. Nutrient (sulphate) removal from wastewater in inverse fluidized bed biofilm reactor. Materials Today: Proceedings, 33, 5476–5480. https://doi.org/10.1016/j.matpr.2020.03.306
  • 3. Bodzek, M. 2019. Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review. Archives of Environmental Protection, 45, 4, 4–19. https://doi.org/10.24425/aep.2019.130237.
  • 4. Boyacioglu, H. 2014. Spatial differentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach. Archives of Environmental Protection, 40/1, 41–50. https://doi.org/10.2478 / aep-2014-0002
  • 5. Brankov, J., Milijašević, D.R.A.G.A.N.A., Milanović, A. 2012. The assessment of the Surface water quality using the water pollution index: a case study of the Timok River (the Danube River Basin), Serbia. Archives of Environmental Protection, 38(1), 49–61. https://doi.org/10.2478/v10265-012-0004-x
  • 6. Bustos-Flores, E., Elizondo-Alvarez, M.A., Uribe-Salas, A. 2021. Thermodynamic and experimental studies on removal of calcium and sulfate ions from recycling water of complex sulfide flotation operations. Transactions of Nonferrous Metals Society of China, 31(10), 3116–3127. https://doi.org/10.1016/S1003-6326(21)65720-5
  • 7. Dou, W., Zhou, Z., Jiang, L., Jian, A., Huang, R., Tian, X., Zhang, W., Chen, D. 2017. Sulfate removal from wastewater using ettringite precipitation: Magnesium ion inhibition and process optimization. Journal of Environmental Management, 196, 518–526. https://doi.org/10.1016/j.jenvman.2017.03.054
  • 8. Fernando, M., Ashane, W., Ilankoon, I.M.S.K., Syed Tauqir, H., Yellishetty, M. 2018. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Minerals Engineering, 117, 74–90. https://doi.org/10.1016/j.mineng.2017.12.004
  • 9. Gavrishin, A.I. 2018. Mine Waters of the Eastern Donbass and their effect on the chemistry of groundwater and surface water in the region. Water Resources, 45(5), 785–794.
  • 10. Gomelya, M.D., Trus, I.M., Shabliy, T.O. 2014. Application of aluminium coagulants for the removal of sulphate from mine water. Chemistry & Chemical Technology, 8 (2), 197–203.
  • 11. Gomelya, N.D., Trus, I.N., Nosacheva, Y.V. 2014. Water purification of sulfates by liming when adding reagents containing aluminum. Journal of Water Chemistry and Technology, 36, 2, 70–74.
  • 12. Guerrero-Flores, A.D., Uribe-Salas, A., Dávila-Pulido, G.I., Flores-Álvarez, J.M. 2018. Simultaneous removal of calcium and sulfate ions from flotation water of complex sulfides. Minerals Engineering, 123, 28–34. https://doi.org/10.1016/j.mineng.2018.04.024
  • 13. Guimaraes, D., Leao, V. A. 2014. Batch and fixedbed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21. Journal of Hazardous Materials, 280, 209–215. https://doi.org/10.1016/j.jhazmat.2014.07.071
  • 14. Kinnunen, P., Kyllönen, H., Kaartinen, T., Mäkinen, J., Heikkinen, J., Miettinen, V. 2018. Sulphate removal from mine water with chemical, biological and membrane technologies. Water Science and Technology, 2017(1), 194–205.
  • 15. Mamelkina, M.A., Cotillas, S., Lacasa, E., Sáez, C., Tuunila, R., Sillanpää, M., Rodrigo, M.A. 2017. Removal of sulfate from mining waters by electrocoagulation. Separation and Purification Technology, 182, 87–93. https://doi.org/10.1016/j.seppur.2017.03.044
  • 16. Öztürk, Y., Ekmekçi, Z. 2020. Removal of sulfate ions from process water by ion exchange resins. Minerals Engineering, 159, 106613. https://doi.org/10.1016/j.mineng.2020.106613
  • 17. Rambabu, K., Banat, F., Pham, Q.M., Ho, S.H., Ren, N.Q., Show, P.L. 2020. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. https://doi.org/10.1016/j.ese.2020.100024
  • 18. Range, B.M., Hawboldt, K.A. 2019. Removal of thiosalt/sulfate from mining effluents by adsorption and ion exchange. Mineral Processing and Extractive Metallurgy Review, 40(2), 79–86.
  • 19. Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I., Akhmedova, V. 2021. Study of the Ways and Methods of Searching Water Leaks in Water Supply Networks of the Settlements of Ukraine. Ecol. Eng. Environ. Technol., 22(4), 14–21. https://doi.org/10.12912/27197050/137874
  • 20. Runtti, H., Tynjälä, P., Tuomikoski, S., Kangas, T., Hu, T., Rämö, J., Lassi, U. 2017. Utilisation of barium-modified analcime in sulphate removal: Isotherms, kinetics and thermodynamics studies. Journal of Water Process Engineering, 16, 319–328. https://doi.org/10.1016/j.jwpe.2016.11.004
  • 21. Sadeghalvad, B., Khorshidi, N., Azadmehr, A., Sillanpää, M. 2021. Sorption, mechanism, and behawior of sulfate on various adsorbents: A critical review. Chemosphere, 263, 128064. https://doi.org/10.1016/j.chemosphere.2020.128064
  • 22. Santander-Muñoz, M., Cardozo-Castillo, P., Valderrama-Campusano, L. 2021. Removal of Sulfate Ions by Precipitation and Flotation. Ingeniería e Investigación, 41(3). https://doi.org/10.15446/ing.investig.v41n3.90349
  • 23. Tang, W., He, D., Zhang, C., Waite, T.D. 2017. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water research, 121, 302–310. https://doi.org/10.1016/j.watres.2017.05.046
  • 24. Tian, X., Zhou, Z., Xin, Y., Jiang, L. M., Zhao, X., An, Y. 2019. A novel sulfate removal process by ettringite precipitation with aluminum recovery: Kinetics and a pilot-scale study. Journal of hazardous materials, 365, 572–580. https://doi.org/10.1016/j.jhazmat.2018.11.032
  • 25. Tong, L., Fan, R., Yang, S., Li, C. 2021. Development and status of the treatment technology for acid mine drainage. Mining, Metallurgy & Exploration, 38(1), 315–327. https://doi.org/10.1007/s42461-020-00298-3
  • 26. Trus, I., Gomelya, M., Levytska, O., Pylypenko, T. 2022a. Development of Scaling Reagent for Waters of Different Mineralization. Ecol. Eng. Environ. Technol., 4, 81–87. https://doi.org/10.12912/27197050/150201
  • 27. Trus, I., Gomelya, M., Skiba, M., Vorobyova, V. 2021. Preliminary studies on the promising method of ion exchange separation of anions. Archives of Environmental Protection, 47(4), 93–97. https://doi.org/10.24425/aep.2021.139505
  • 28. Trus, I., Radovenchyk, I., Halysh, V., Skiba, M., Vasylenko, I., Vorobyova, V., Hlushko, O., Sirenko, L. 2019. Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water. Journal of Ecological Engineering, 20(8), 107–113. https://doi.org/10.12911/22998993/110767
  • 29. Trus, I.M., Gomelya, M.D. 2021. Desalination of mineralized waters using reagent methods. Journal of Chemistry and Technologies, 29(3), 417–424. https://doi.org/10.15421/jchemtech.v29i3.214939
  • 30. Trus, I., Gomelya, M., Skiba, M., Pylypenko, T., Krysenko, T. 2022b. Development of Resource-Saving Technologies in the Use of Sedimentation Inhibitors for Reverse Osmosis Installations. J. Ecol. Eng., 23(1), 206–215. https://doi.org/10.12911/22998993/144075
  • 31. Trus, I.M., Gomelya, M.D., Makarenko, I.M., Khomenlo, A.S., Trokhymenko, G.G. 2020a. The Study of the particular aspects of water purification from heavy metal ions using the method of nanofiltration. Naukovyi Visnyk Natsionalnogo Hirnychogo Universytety, 4, 117–123. https://doi.org/10.33271/nvngu/2020-4/117
  • 32. Trus, І., Gomelya, N., Halysh, V., Radovenchyk, I., Stepova, O., Levytska, O. 2020b. Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3/6(105), 21–27. https://doi.org/10.15587/1729-4061.2020.206443
  • 33. Trus, I. 2022. Optimal conditions of ion exchange separation of anions in low-waste technologies of water desalination. Journal of Chemical Technology & Metallurgy, 57(3), 550–558.
  • 34. Vasyliev, G., Vorobyova, V., Zhuk, T. 2020. Raphanus sativus L. extract as a scale and corrosion inhibitor for mild steel in tap water. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/5089758
  • 35. Voza, D., Vukovic, M., Takic, L., Nikolic, D., Mladenovic-Ranisavljevic, I. 2015. Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia. Archives of Environmental Protection, 41(4), 96–103. https://doi.org/10.1515/aep-2015-0044
  • 36. Vu, H. H. T., Gu, S., Thriveni, T., Khan, M. D., Tuan, L. Q., & Ahn, J. W. 2019. Sustainable treatment for sulfate and lead removal from battery wastewater. Sustainability, 11(13), 3497. https://doi.org/10.3390/su11133497
  • 37. WHO. 2022. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. https://www.who.int/publications/i/item/9789240045064
  • 38. Zhu, M., Yin, X., Chen, W., Yi, Z., Tian, H. 2019. Removal of sulphate from mine waters by electrocoagulation/rice straw activated carbon adsorption coupling in a batch system: optimization of process via response surface methodology. Journal of Water Reuse and Desalination, 9(2), 163–172. https://doi.org/10.2166/wrd.2018.054
  • 39. Vasiichuk, V., Kurylets, O., Nahurskyy, O., Kuchera, Y., Bukliv, R., Kalymon, Y. 2022. Obtaining New Aluminium Water Clarification Coagulant from Spent Catalyst. Ecological Engineering & Environmental Technology, 23(3), 47–53. https://doi.org/10.12912/27197050/147147
  • 40. Yurasov, S., Safranov, T., Chugai, A., Kuryanova, S., Artvykh, J. 2022. Adapting the Methods for Assessing a Water Quality when Normalizing the Pollutant Discharges in Ukraine to the Regulatory Requirements of the European Union. Ecol. Eng, 3, 167–176. https://doi.org/10.12912/27197050/147447
  • 41. Chugai, A., Safranov, T. 2020. Assessment of technogenic loading on the surface water bodies of the separate regions of the North-Western Black Sea. Journal of Ecological Engineering, 21(5), 197–201. doi.org/10.12911/22998993/122672
  • 42. Pavlychenko, A., Kulikova, D., Borysovska, O. 2022. Substantiation of technological solutions for the protection of water resources in the development of coal deposits. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 970(1), 012038 https://doi.org/10.1088/1755-1315/970/1/012038
  • 43. Buzylo, V., Pavlychenko, A., Borysovska, O. 2020. Ecological aspects of filling of worked-out area during underground coal mining. In E3S Web of Conferences. EDP Sciences, 201, 01038. https://doi.org/10.1051/e3sconf/202020101038
  • 44. Buzylo, V., Pavlychenko, A., Savelieva, T., Borysovska, O. 2019. Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. Paper presented at the E3S Web of Conferences, 60. https://doi.org/10.1051/e3sconf/20186000013
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2966917e-d86e-42b7-a615-998c906a4cbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.