PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Możliwość zastosowania nanopłynów jako nośników ciepła w obiegach chłodniczych i klimatyzacyjnych

Identyfikatory
Warianty tytułu
EN
Possibility of using the nanofluids as a working fluid in cooling and air-conditioning systems
Języki publikacji
PL
Abstrakty
PL
Przedstawiono aktualny stan wiedzy w zakresie stosowania nanopłynów w układach wymiany ciepła. Nanopłyny dziełu swoim nietypowym właściwościom, zwłaszcza przewodnictwu cieplnemu, są nowym typem nośnika ciepła stanowiącym alternatywę dla klasycznych, dotychczas stosowanych nośników. Opisano metody przygotowania nanopłynów, od których zależą ich właściwości. Szczególną uwagę poświęcono metodom zmierzającym do zapewnienia stabilności nanopłynów na bazie wody, glikolu i czynników chłodniczych. Wykazano, że kontynuowane badania nad właściwościami nanopłynów zmierzają do wyeliminowania ich wad, a w szczególności zmniejszenia tendencji do sedymentacji i agregacji.
EN
The current state of knowledge regarding the use of nanofluid as a working fluid in heat exchangers is presented. Nanofluids due to their unusual properties, especially thermal conductivity, are a new type of heat transfer medium constitutes an alternative to classical media. Methods for nanofluid preparation, on which nanofluid properties depends, are described. Particular attention is given to methods to ensure the stability of water-, glycol- and refrigerant- based nanofluids. It has been shown that continued research on nanofluids characteristics seek to eliminate their disadvantages, in particular, to reduce the sedimentation and aggregation tendency.
Rocznik
Strony
4--10
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • Katedra Techniki Cieplnej i Chłodnictwa, Politechnika Koszalińska
autor
  • Katedra Techniki Cieplnej i Chłodnictwa, Politechnika Koszalińska
autor
  • Katedra Techniki Cieplnej i Chłodnictwa, Politechnika Koszalińska
Bibliografia
  • [1] AKOH H., TSUKASAKI Y., YATSUYA S., TASAKI A.: Magnetic properties of ferromagnetic ultrafine panicles prepared by vacuum evaporation on running oil substrate Journal of Crystal Growth, 45, 495-500, 1978.
  • [2] BI S.-S., SHI L., ZHANG L.-L.: Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering, 28, 1834-1843, 2008.
  • [3] CHANG H., JWO C., FAN P., PAI S.: Process optimization and material properties for nanofluid manufacturing- Int. I. Adv. Manuf. Technol., 34 (3), 300-306, 2007.
  • [4] CHOI S.U.S., ZHANG Z.G., YU W., LOCKWOO F.E., GRULKE E. A.: Anomalous thermal conductivity enhancement in nanotube suspensions Appl. Phys. Lett., 79, 2252-2254, 2001
  • [5] CHOI. S. U S.: Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flows, eds. D.A. Singer and H. P. Wang, vol. 231, 99-105, American Society of Mechanical Engineers, New York, 1995
  • [6] CIEŚLIŃSKI I.T., KACZMARCZYK T.Z.: Pool boiling of water-AL2O2, and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Research Letters, 6, 220-229, 2011.
  • [7] DAS S.K., CHOI S.U.S., PATEL H.E.: Heat transfer in nanofluids. A review, Heat Transfer Engineering, 27(10), 3-19, 2006.
  • [8] DUANGTHONGSUK W., WONGWISES S.: Heal transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 52, 2059-2067, 2009
  • [9] EASTMAN JA, CHOI US, LI S, THOMPSON LI, LEE S.: Enhanced thermal conductivity through the development of nanofluid. Materials Research Society Symposium-proceedings, vol. 457, Materials Research Society, 3-11, 1997.
  • [10] EVANS W., PRASHER R., FISH I., MEAKIN P., PHELAN P., KEBLINSKI P Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer, 51, 1431-1438, 2008
  • [11] GHADIMI A., SAIDUR R., METSELAAR H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54, 4051 -4068, 2011.
  • [12] HONG K.S., HONG T.K., YANG H.S.: Thermal conductivity of Fe nanofluid- depending on the cluster size of nanoparticles. Appl. Phys. Lett., 88, 3, 1-3, 2006
  • [13] HUANG J., WANG X.: Influence of pH on the stability characteristics of nanofluid. IEEE, 2009.
  • [14] HWANG Y., LEE J.K., LEE C.H., JUNG Y.M., CHEONG S.I., LEE C.G., KU B.C., JANG S.P.: Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta, 455, 70-74, 2007
  • [15] HWANG Y., LEE J.K., LEE J.K., JEONG Y.M., CHEONG S., AHN Y.C., KIM S.K.: Production and dispersion stability of nanoparticles in nanofluids. Powder Technology, 186, 145-153, 2008.
  • [16] JIANG W., DING G., PENG H.: Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences, 48, 1108-1115, 2009.
  • [17] KEBLINSKI P., EASTMAN J.A., CAHILL D.G.: Nanofluid for thermal transport Mater Today. (6), 36-44, 2005
  • [18] LEE D., KIM J.W., KIM B.G.: A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J. Phys. Chem., 4323-4328, 2006
  • [19] LEE J.: Convection Performance of Nanofluids for Electronics Cooling. Ph. D., Stanford University. United States - California, 2009
  • [20] LEE K., HWANG Y., CHEONG S., KWON L., KIM S., LEE J.: Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Current Applied Physics, 9, 128-131, 2009.
  • [21] LEE S., CHOI S.U.S., LI S., EASTMAN J.A.: Measuring thermal conductivity of fluid containing oxide nanoparticles. ASME, Journal Heat Transfer, 121, 280-289, 1999.
  • [22] LI X., ZHU D., WANG X.: Evaluation on dispersion behavior of the aqueous copper nano-suspensions Journal of Colloid and Interface Science, 310, 456-463, 2007
  • [23] LI X.F., ZHUA D. S., WANG X.J., WANG N., GAO J.W, LI H.: Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochimica Acta, 469, 98-103, 2008
  • [24] LI Y., ZHOU J., TUNG S., SCHNEIDER E., XI S.: A review on development of nanofluid preparation and characterization. Powder Technology, 196, 89-101, 2009
  • [25] LIU M.S., LIN M. C.-C., TSAI C.Y., WANG C.-C.: Enhancement of thermal conductivity with cu for nanofluid using chemical reduction method. Int. J. Heat Mass Transfer 49, 3028-3033, 2006.
  • [26] LO C.H., TSUNG T.T., CHEN L.C., SU C.H., LIN H.M.: Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). Journal Nanoparticle Research, 7, 313-320, 2005.
  • [27] LO C.H., TSUNG T.T., CHEN L.C.: Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS). ISME International Journal, Series B: Fluid and Thermal Engineering, 48 (4), 750-755, 2006.
  • [28] LO C.H., TSUNG T.-T, CHEN L-C.: Shape-controlled synthesis of Cu-based nanofluid using submerged arc nano-particle synthesis system (SANSS). Journal of Crystal Growth, 277, 636-642, 2005.
  • [29] MAXWELL J. C.: A treatise on electricity and magnetism 2nd ed.,vol. 1, Clarendon Press, Oxford, U.K., 1881
  • [30] MOHAMMEDA H.A., BHASKARANA G., SHUAIBA N.H., SAIDURB R.: Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluid. A review Renewable and Sustainable Energy Reviews. 15. 1502-1512, 2011.
  • [31] MURSHED S.M.S., LEONG K.C., YANG C.: Enhanced thermal conductivity of TiO2, - water based nanofluids. International Journal of Thermal Sciences, 44, 367-373, 2005.
  • [32] MURSHED S.M.S., LEONG K.C., YANG C.: Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences. 47, 560-568, 2008.
  • [33] MURSHED S.M.S., LEONG K.C., YANG C.: Thermophysical and electrokinetic properties of nanofluids. A critical review, Applied Thermal Engineering, 28, 2109-2125, 2008.
  • [34] PALABIYIK I., MUSINA Z., WITHARANA S., DING Y.: Dispersion stability and thermal conductivity of propylene glycol-based nanofluids. J. Nanopart. Res., 13, 5049-5055, 2011.
  • [35] PETERSON G.P., LI C.H.: Heat and mass transfer in fluids with nanoparticle. Adv. Heat Transfer Suspensions, 39, 257-376, 2006
  • [36] TRISAKSRI V., WONGWISES S.: Critical review of heat transfer characteristics of nanofluids. Renewable and Sustainable Energy Reviews, 11,512-523, 2007
  • [37] WAGENER M., MURTY B.S., GUNTHER B.: Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids. S. Komarnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, vol. 457, Materials Research Society, 149-154, 1997.
  • [38] WANG X.J., U X.-F.: Influence of pH on nanofluids viscosity and thermal conductivity. Chin. Phys. Lett., 26, 5, 056601, 2009
  • [39] WANG X.Q., MUJUMDAR A.S.: Heat transfer characteristics of nanofluid. A review, International Journal Thermal Science, 46(1), 1-19, 2007.
  • [40] WEI X.. ZHU H., KONG T., WANG L.: Synthesis and thermal conductivity of Cu2O nanofluids. International Journal of Heat and Mass Transfer, 52, 4371-4374, 2009.
  • [41] WEN D., LIN G., VAFAEI S., ZHANG K.: Review of nanofluids for heat transfer applications. Particuology 7, 141-150, 2009
  • [42] WITHARANA S., HODGES C., XU D., LAI X., DING Y.: Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions. J. Nanopart. Res., 14:851, 1-11,2012.
  • [43] XIE H., LEE H., YOUN W., CHOI M.: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 94, (8), 4967-4971, 2003
  • [44] XUAN Y., LI Q.: Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21, 58-64, 2000
  • [45] YANG L., DU K., ZHANG X.S., CHENG B.: Preparation and stability of Al2O3 nano-particle suspension of ammonia-water solution. Applied Thermal Engineering, 31, 3643-3647, 2011.
  • [46] YU W., XIE H., CHEN L., LI Y., WANG Q.: Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380, 1-5, 2011.
  • [47] ZHU D., LI X., WANG N., WANG X., GAO J., LI H.: Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr. Appl. Phys., 9, 131-139, 2009
  • [48] ZHU H., LIN Y., YIN Y.: A novel one step chemical method for preparation of copper nanofluid. Journal of Colloid and Interface Science, 227, 100-103, 2004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2965f8c1-ee63-4d6b-b38d-d6fc2db2f6fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.