PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Certain convergence results for homogeneous singular young measures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider purely singular homogeneous Young measures associated with elements of sequences of piecewise constant functions and with limits of such sequences. We first consider a case when the limit of a such sequence is piecewise constant. The next point involves the sequences of bounded oscillating functions, divergent in the strong topology in L ∞ , but weakly∗ convergent to a homogeneous Young measure. We also present an example of a fast oscillating sequence, illustrating the result. In the presented results, generalizing to some extent known examples, we try to avoid advanced methods of functional analysis that are usually used when solving problems of this type.
Rocznik
Strony
44--52
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] Young, L.C. (1937). Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III, 30, 212-234.
  • [2] Müller, S. (1999). Variational Models for Microstructure and Phase Transitions. Calculus of variations and geometric evolution problems, Lecture Notes in Mathematics, (1713), Springer, 85-210.
  • [3] Florescu, L. (2013). Convergence results for solutions of a first-order differential equation. J. Nonlinear Sci. Appl., 6(1), 18-28.
  • [4] Mielke, A., Rossi, R., & Saveré, G. (2013). Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Partial Differential Equations, 46(1-2), 253-310.
  • [5] Bauzet, C., Vallet, G., & Wittbold, P. (2014). The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation. J. Funct. Anal., 266(4), 2503-2545.
  • [6] Kraynyukova, N., & Nesenenko, S. (2014). Measure-valued solutions for models of ferroelectric materials. Proc. Roy. Soc. Edinburgh Sect. A144, 5, 935-963.
  • [7] Nguyen, H.T., & Pączka, D.(2016). Weak and Young measure solutions for hyperbolic initial boundary value problems of elastodynamics in the Orlicz-Sobolev space setting. SIAM J. Math. Anal., 48(2), 1297-1331.
  • [8] Balaadich, F., & Azroul, E. (2021). Existence of solutions to the A-Laplace system via Young measures. Z. Anal. Anwend., 40(3), 261-276.
  • [9] Ghattassi, M., Huo, X., & Masmoudi, N. (2022). On the diffusive limits of radiative heat transfer system I: Well-prepared initial and boundary conditions. SIAM J. Math. Anal., 54(5), 5335-5387.
  • [10] Balaadich, F., & Azroul, E. (2023). Young measure theory for steady problems in Orlicz-Sobolev spaces. Novi Sad J. Math., 53(1), 117-132.
  • [11] Ghalia, S., & Affane, D. (2023). Control problem governed by an iterative differential inclusion. Rend. Circ. Mat. Palermo (2), 72(4), 2621-2642.
  • [12] Temghart, S.A., El Hammar, H., Allalou, Ch., & Hilal, K. (2023). Existence results for some elliptic systems with perturbed gradient. Filomat, 37(20), 6905-6915.
  • [13] Puchała, P. (2021). On a certain embedding in the space of measures. J. Appl. Math. Comput. Mech., 20(2), 53-63.
  • [14] Puchała, P. (2021). Young measures - an abstract tool in investigation concrete problems. In: Selected Topics in Contemporary Mathematical Modeling, Czestochowa: Publishing Office of Czestochowa University of Technology, 91-105.
  • [15] Rindler, P. (2018). Calculus of Variations. Springer International Publishing AG, part of Springer Nature.
  • [16] Kružík, M., & Roubícek, T. (2019). Mathematical Methods in Continuum Mechanics of Solids. Springer Nature.
  • [17] Roubícek, T. (2020). Relaxation in Optimization Theory and Variational Calculus, 2nd ed. Walter de Gruyter.
  • [18] Aliprantis, Ch.D., & Border, K.C. (1999). Infinite Dimensional Analysis. A Hitchhiker’s Guide. Berlin Heidelberg: Springer-Verlag.
  • [19] Puchała, P. (2014). An elementary method of calculating Young measures in some special cases. Optimization, 63(9), 1419-1430.
  • [20] Pedregal, P. (2000). Variational Methods in Nonlinear Elasticity. Society for Industrial and Applied Mathematics.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29644bff-c50e-47a5-b74d-861ad24f3d45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.