PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of Brick Dust and Powdered Ceramsite in the Phosphorus Removal from Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biological methods of removing the phosphorus compounds from wastewater as applied currently at treatment plants may no longer be regarded as sufficient. They can therefore be augmented with physicochemical methods, raising the efficiency of the wastewater treatment system. Indeed, almost all large urban wastewater treatment plants practice precipitation of phosphorus using salts of iron and aluminum in the form of chemical coagulants. Nevertheless, the search for new ways of assisting with the removal of the biogenic element from wastewater, e.g. by dosing bentonites, fly ash and post-technological sludge from water treatment stations, or even unconventional organic sorbents such as rice husks, is ongoing. A further unconventional material in the P-removal from wastewater may take the form of powdered mineral materials. The work presented here shows the results of laboratory scale trials on the P-removal using brick dust and powdered ceramsite (expanded clay).
Rocznik
Strony
63--71
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Boujelben N., Bouzid J., Elouear Z., Feki M., Jamoussi F., Montiel A. 2008. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. Journal of Hazardous Materials, 151, 103–110.
  • 2. Bowes M. J., Jarvie H. P., Halliday S. J., Skeffington R. A., Wade A. J., Loewenthal M., 2015. Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships. Science of the Total Environment, 511, 608–620.
  • 3. Bunce J.T., Ndam E., Ofiteru I.D., Moore A., Graham D.W. 2018. A Review of Phosphorus Removal Technologies and Their Applicability to Small-Scale Domestic Wastewater Treatment Systems. Frontiers in Environmental Science, 2018, 6, 8.
  • 4. Bus A., Kaczmarczyk A., Baryła A. 2014. Choosing of reactive material for phosphorous removal from water and wastewater on the example of lightweight aggregate Pollytag®. Inżynieria Ekologiczna, 39, 33–41 (in Polish)
  • 5. Caravelli A.H., Contreras E.M., Zaritzky N.E. 2010. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges. Journal of Hazardous Materials, 177, 199–208.
  • 6. Chen J., Yan L. G., Yu H. Q., Li S., Qin L. L., Liu G. Q., Li Y. F., Du B. 2016. Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution. Chemical Engineering Journal, 287, 162–172.
  • 7. Chen R., Zhang Z., Feng C., Lei Z., Li Y., Li M., Shimizu K., Sugiura N. 2010. Batch study of arsenate (V) adsorption using Akadama mud: effect of water mineralization. Applied Surface Science, 256 (9), 2961–2967.
  • 8. Cieślik B., Konieczka P. 2017. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740.
  • 9. Cucarella V., Mazurek R., Zaleski T., Kopeć M., Renman G. 2009. Effect of Polonite used for phosphorus removal from wastewater on soil properties and fertility of a mountain meadow. Environmental Pollution, 157(7), 2147–2152.
  • 10. Cucarella, V., Renman, G. 2009. Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments – a comparative study. Journal of Environmental Quality, 38, 381–392
  • 11. Czarnota J., Masłoń A. 2019. Biogranulation and Physical Properties of Aerobic Granules in Reactors at Low Organic Loading Rate and with Powdered Ceramsite Added. Journal of Ecological Engineering, 20(9), 202–210.
  • 12. Czarnota J., Masłoń A., Zdeb M. 2018. Powdered keramsite as unconventional method of AGS technology support in GSBR reactor with minimumoptimum. E3S Web of Conferences, 44, 00024.
  • 13. Hamdi N., Srasra E. 2008. Sorption of phosphate from acidic wastewater into three Tunisian type clay soils. Journal of Water Chemistry and Technology, 30, 4, 208–214.
  • 14. Huang W.W., Wang S.B., Zhu Z.H., Li L., Yao X.D., Rudolph V., Haghseresht F. 2008. Phosphate removal from wastewater using red mud, Journal of Hazardous Materials, 158, 35–42.
  • 15. Johansson Westholm L. 2006. Substrates for phosphorus removal – Potential benefits for on-site wastewater treatment. Water Research, 40, 23–36.
  • 16. Kaczmarczyk A., Woja K., Bliska P., Baryła A., Bus A. 2017. The efficiency of filtration materials (Polonite® and Leca®) supporting phosphorus removal in on site treatment systems with wastewater infiltration. Infrastructure and Ecology Rural Areas, IV, 1401–1413.
  • 17. Kasprzyk M., Gajewska M. 2017. Preliminary results from application Phoslock® to remove phosphorus compounds from wastewater. Journal of Ecological Engineering, 18(4), 82–89.
  • 18. Kasprzyk M., Gajewska M. 2019. Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Science of the Total Environment, 650, 249–256.
  • 19. Kim D.-G., Yoo I.S., Park B.-S., Lee Y.-H., Kim S.-H., Chang D., Sunwoo Y., Shin H.-S., Eo Y.-D., Hong K-H. 2012. Alternative technique for removal of phosphorus in wastewater using chemically surface-modified silica filter. Journal of Industrial and Engineering Chemistry, 18(5), 1560–1563.
  • 20. Kõiv M., Liira M., Mander Ü., Mõtlep R., VohlaC., Kirsimäe K. 2010. Phosphorus removal using Carich hydrated oil shale ash as filter material – The effect of different phosphorus loadings and wastewater compositions. Water Research, 44, 18, 5232–5239.
  • 21. Kuroki V., Bosco G.E., Fadini P.S., Mozeto A.A., Cestari A.R., Carvalho W.A. 2014. Use of a La(III)modified bentonite for effective phosphate removal from aqueous media. Journal of Hazardous Materials, 274, 124–131.
  • 22. Lanham A. B., Oehmen A., Saunders A. M., Carvalho G., Nielsen P. H., Reis M.A.M. 2013. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. Water Research, 47(19), 7032–7041
  • 23. Li J., Li B., Huang H., Lv X., Zhao N., Guo G., Zhang D. 2019. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of the Total Environment, 687, 460–469.
  • 24. Li J., Wu B., Zhou T., Chai X. 2018. Preferential removal of phosphorus using modified steel slag and cement combination for its implications in engineering applications. Environmental Technology & Innovation, 10, 264–274.
  • 25. Liu Y., Sheng X., Dong Y., Ma Y. 2012. Removal of high-concentration phosphate by calcite: Effect of sulfate and pH. Desalination, 289, 66–71.
  • 26. Ma L., Zhu J., Xi Y., Zhu R., He H., Liang X., Ayoko G.A. 2016. Adsorption of phenol, phosphate and Cd(II) by inorganic-organic montmorillonites: A comparative study of single and multiple solute. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 63–71.
  • 27. Masłoń A. 2016. Phosphorus removal from aqueous solutions using cement milk. Gaz, Woda i Technika Sanitarna, 12, 457–461 (in Polish)
  • 28. Masłoń A., Tomaszek J.A., Zamorska J., Zdeb M., Piech A., Opaliński I., Jurczyk Ł. 2019. The impact of powdered keramsite on activated sludge and wastewater treatment in a sequencing batch reactor. Journal of Environmental Management, 237, 305–312.
  • 29. Moharami S., Jalali M. 2015. Use of modified clays for removal of phosphorus from aqueous solutions. Environmental Monitoring and Assessment, 187(10), 639.
  • 30. Ooi K., Sonoda A., Makita Y., Torimura M. 2017. Comparative study on phosphate adsorption by inorganic and organic adsorbents from a diluted solution. Journal of Environmental Chemical Engineering, 5 (4), 3181–3189.
  • 31. Sima T.V., Letshwenyo M.W., Lebogang L. 2018. Efficiency of waste clinker ash and iron oxide tailings for phosphorus removal from tertiary wastewater: Batch studies. Environmental Technology & Innovation, 11, 49–63.
  • 32. Totczyk G., Klugiewicz I., Pasela R., Górski Ł. 2015. Removal of Phosphates with Post-technological Sludge from Water Treatment Plant. Rocznik Ochrona Środowiska, 17(2), 1660–1673 (in Polish).
  • 33. Trikoilidou E., Samiotis G., Bellos D., Amanatidou E. 2016. Sustainable operation of a biological wastewater treatment plant. IOP Conf. Series: Materials Science and Engineering, 161, 012093
  • 34. Vianna M.T.G., Marques M., Bertolino L.C. 2016. Sun coral powder as adsorbent: Evaluation of phosphorus removal in synthetic and real wastewater. Ecological Engineering, 97, 13–22.
  • 35. Wang Y., He H., Zhang N., Shimizu K., Lei Z., Zhang Z. 2018. Efficient capture of phosphate from aqueous solution using acid activated akadama clay and mechanisms analysis. Water Science and Technology, 78(7), 1603–1614.
  • 36. Wang Z., Lin Y., Wu D., Kong H. 2016. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture. Chemosphere, 144, 1290–1298.
  • 37. Wu D., Zhang B., Li C., Zhang Z., Kong H. 2006. Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. Journal of Colloid and Interface Science, 304 (2), 300–306.
  • 38. Xiong J., Qin Y., Islam E., Yue M., Wang W. 2011. Phosphate removal from solution using powdered freshwater mussel shells. Desalination, 276, 317–321.
  • 39. Yadav D., Kapur M., Kumar P., Kumar Mondal M. 2015. Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Process Safety and Environmental Protection, 94, 402–409.
  • 40. Yan L., Xu Y., Yu H., Xin X., Wei Q., Du B. 2010. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxyiron-aluminum pillared bentonites. Journal of Hazardous Materials,179 (1–3), 244–250.
  • 41. Yin H., Yun Y., Zhang Y., Fan C. 2011. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. Journal of Hazardous Materials, 198, 362–369.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29629af3-9c81-4c5c-bd8b-30e145ad047a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.