PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wybrane zagadnienia modelowania i optymalizacji skraplaczy energetycznych i wymienników regeneracyjnych

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Celem badań zawartych w pracy jest próba poprawy sprawności bloków energetycznych. W pracy skupiono się na możliwości jej poprawy od strony układu chłodzenia (skraplacze) i od strony wymienników regeneracyjnych. Poprawę sprawności bloku można uzyskać na etapie projektowania poprzez dobór odpowiedniej geometrii i konfiguracji wymienników lub podczas eksploatacji poprzez dobór parametrów cieplno-przepływowych. W pracy przedstawiono możliwości zastosowania metod entropowych i egzegetycznych do optymalizacji osiągów powierzchniowych wymienników ciepła (skraplaczy, wymienników regeneracyjnych) z uwzględnieniem ich wpływu na układ cieplny bloku. Dokonano również analizy różnych konfiguracji połączenia skraplaczy bloku energetycznego dużej mocy. Zbadano wpływ temperatury i strumienia masy wody chłodzącej na moc i sprawność bloku. Opracowane modele zostały sprawdzone na podstawie danych uzyskanych z zerowymiarowych symulatorów skraplacza, wymiennika regeneracyjnego, wymiennika przeciwprądowego opracowanych na podstawie literatury a walidowanych z uwzględnieniem danych pomiarowych. Analizę połączenia różnych konfiguracji skraplaczy i wpływu temperatury wody chłodzącej przeprowadzono na podstawie danych uzyskanych z modeli opracowanych w programie GateCycle. W pracy dokonano analizy szeregu praktycznych przypadków: doboru średnicy rurek skraplaczy, oceny konstrukcji skraplaczy, określenie optymalizacji konfiguracji skraplaczy w układzie z kilkoma wylotami z turbin i kilkoma skraplaczami, rozkładu podgrzewu wody zasilającej pomiędzy szeregowo zainstalowane wymienniki regeneracyjne, określenia optymalnego strumienia wody chłodzącej skraplacz przy pracy bloku z obciążeniem różnym od znamionowego, oceny wpływu temperatury wody chłodzącej na osiągi bloku energetycznego, oceny efektywności skraplacza i wymiennika regeneracyjnego. Praca stanowi próbę uogólnienia dotychczasowych wyników badań Autora w zakresie modelowania matematycznego powierzchniowych wymienników ciepła i układów chłodzenia prowadzonych w Instytucie Techniki Cieplnej Politechniki Warszawskiej.
EN
The aim of the research included in the paper is to improve the efficiency of power units. The paper focuses on the possibility of improving the efficiency from the side of the cooling system (steam condensers) and from the side of regenerative beat exchangers. Power plant efficiency can be improved at the design stage by selecting the appropriate geometry and configuration of heat exchangers or during operation by selecting thermo-flow parameters. The paper presents the possibilities of using entropy and exergy methods to optimize the performance of surface heat exchangers (steam condensers, regenerative heat exchangers) taking into account their influence on the thermal system of the power plant. Various configurations of the connection of steam condensers of a high-capacity power plant were also analyzed. The influence of inlet cooling water temperature and cooling water mass flow rate on the power and efficiency of the power plant was investigated. The models developed were tested on the basis of data obtained from zero-dimensional simulators of a steam condenser, regenerative heat exchanger, and counter-flow heat exchanger developed on the basis of literature and validated taking in to account measurement data. The analysis of the combination of different configurations of steam condensers and the effect of cooling water temperature was based on data obtained from models developed in the GateCycle program. The paper analyzes a number of practical cases: selection of the diameter of steam condenser tubes, assessment of the condenser design, determination of the optimal configuration of steam condensers in systems with several turbine outlets and several condensers, distribution of water heating between regeneration exchangers installed in series, determination of an optimal cooling water mass flow rate for off-design load conditions of the power unit, evaluation of the effect of cooling water temperature on power plant performance, and assessment of steam condenser and regenerative heat exchanger effectiveness. The paper is an attempt to generalize the author's current research results in the field of mathematical modelling of surface beat exchangers and cooling systems carried out at the Institute of Heat Engineering, Warsaw University of Technology.
Rocznik
Tom
Strony
3--138
Opis fizyczny
Bibliogr. 150 poz., rys., tab., wykr.
Twórcy
  • Wydział Mechaniczny, Energetyki i Lotnictwa
Bibliografia
  • [1] Cengel Y.A., Heat transfer, McGraw-Hill, 1998.
  • [2] Holman J.P., Heat Transfer, McGraw-Hill, New York, 2002.
  • [3] Kostowski E., Heat Transfer (in Polish), WPS, Gliwice, 2000.
  • [4] Gogół W., Wymiana ciepła, tablice i wykresy, WPW, Warszawa, 1972.
  • [5] Putman R.E., Harpster J.W., The measurement of condenser losses due to fouling and those due to air ingress, EPRI Condenser Seminar and Conference, San Antonio, TX, Sept. 10-12, 2002.
  • [6] Antar M.A., Zubair M.S., The impact of fouling on performance evaluation of multi-zone feedwater heaters, Applied Thermal Engineering, 27, 2505-2513, 2007.
  • [7] Salij A., Wpływ jakości i niezawodności układu skraplaczy turbinowych na pracę bloku energetycznego, Politechnika Warszawska, 2011.
  • [8] Rusowicz A., Zagadnienia modelowania matematycznego skraplaczy energetycznych. Warszawa: Prace Naukowe Politechniki Warszawskej, Mechanika, z. 249, 2013.
  • [9] Grzebielec A., Rusowicz A., Thermal Resistance of Steam Condensation in Horizontal Tube Bundles. Journal of Power Technologies. vol. 91, No. 1, pp. 41-48, 2011.
  • [10] Butrymowicz D., Trela M., Effects of fouling and inert gases on performance of recuperative feed-water heaters, Archives of Thermodynamics, No. 1-2, vol. 23, 2001.
  • [11] Chmielniak T., Trela M., Diagnostics of New-Generation Thermal Power Plants, Gdańsk, 2008.
  • [12] Szargut J., Local and system exergy losses in cogeneration processes, Int. J. Therm., 10, 4, 135-142, 2007.
  • [13] ] Szargut J., Problems of thermodynamics optimization, Archives of Thermodynamics, 19, 3/4, 85-94, 1998.
  • [14] Kolenda Z., Analiza możliwości zmiejszenia niedoskonałości termodynamicznej procesów zaopatrzenia w elektryczność, ciepło i chłód w aspekcie zrównoważonego rozwoju kraju, PAN (Ziębik A., Szargut J., Stanek W. (red.)), 2006.
  • [15] Badescu V., Optimal paths for minimizing lost available work during usual heat transfer processes, J. Non-Equilib. Thermodyn. 29, 53-73, 2004.
  • [16] Benoit A., Gosselin L., Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube condensers, Int. J. Energy Res. 32, 958-969, 2008.
  • [17] Khalifeh Soltan B., Saffar-Avval M., Damangir E., Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing, Appl. Therm. Eng. 24, 2801-2810, 2004.
  • [18] Hajabdollahi H., Ahmadi P., Dincer I., Thermoeconomic optimization of a shell and tube condenser using both genetic algorithm and particle swarm, International Journal of Refrigeration, 34, 1066-1076, 2011.
  • [19] McClintock F.A., The Design. of Heat Exchangers for Minimum Irreversibility, ASME Paper, no. 51-A-108, 1951.
  • [20] Prigogine I., Introduction to Thermodynamics of Irreversible Processes, 3rd ed., Wiley, New York, pp. 76-77, 1967.
  • [21] Bejan A., The concept of irreversibility in heat exchanger design: counterflow heat exchangers for gas-to-gas applications, J. Heat Transfer Trans. ASME 99(3), 374-380, 1977.
  • [22] Bejan A., Second-law analysis in heat transfer and thermal design, Adv Heat Transfer, 15, 1-58, 1982.
  • [23] Hesselgreaves J.E., Rationalization of Second Law Analysis of Heat Exchangers, Int. J. Heat Mass Transfer, 43, 4189-4204, 2000.
  • [24] Guo J., Xu M., Cheng L., The application of field synergy number in shell-and-tube heat exchanger optimization design, Applied Energy, 86, 2079-2087, 2009.
  • [25] Bejan A., Entropy generation minimization: The new thermodynamics of finite size devices and finite time processes, Journal of Applied Physics, 79, 1191-1218, 1996.
  • [26] Laskowski R., Rusowicz A., Smyk A., Verification of the condenser tubes diameter based on the minimization of entropy generation, Rynek Energii, 1(116), 71-75, 2015.
  • [27] Ogulata R.T., Doba F., Yilmaz T., Irreversibility analysis of cross flow heat exchangers, Energy Conversion & Management, 41, 1585-1599, 2000.
  • [28] Ordonez J.C., Bejan A., Entropy generation minimization in parallel-plates counterfow heat exchangers, Int. J. Energy Res., 24, 843-864, 2000.
  • [29] Sahiti N., Krasniqi F., Fejzullahu Xh., Bunjaku J., Miniqi A., Entropy generation minimization of a double-pipe pin fin heat exchange, Applied Thermal Engineering, 28, 2337-2344, 2008.
  • [30] Mishra M., Das P.K., Sarangi S., Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm, Applied Thermal Engineering, 29, 2983-2989, 2009.
  • [31] Ogulata R.T., Doba F., Yilmaz T., Second law and experimental analysis of a cross flow heat exchanger, Journal of Heat Transfer Engineering, 20, 20-27, 1999.
  • [32] Rao R.V., Patel V.K., Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm, International Journal of Thermal Sciences, 49, 1712-1721, 2010.
  • [33] Lerou P.P.P.M., Veenstra T.T., Burger J.F., Brake H.J.M., Rogalla H., Optimization of counterflow heat exchanger geometry through minimization of entropy generation, Cryogenics, 45, 659-669, 2005.
  • [34] Laskowski R., Tomczak P., Jaworski M., Application of entropy generation minimization for optimizing the geometry of a double-tube heat exchanger, Heat Transfer Research, vol. 48, 955-968, 2017.
  • [35] Guo J., Cheng L., Xu M., Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm, Applied Thermal Engineering, 29, 2954-2960, 2009.
  • [36] Li M., Lai A., Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method, Energy Conversion and Management, 65, 133-139, 2013.
  • [37] Zhou Y., Zhu L., Yu J., Li Y., Optimization of plate-fin heat exchangers by minimizing specific entropy generation rate, International Journal of Heat and Mass Transfer, 78, 942-946, 2014.
  • [38] Shah R.K., Skiepko T., Entropy generation extrema and their relationship with heat exchanger effectiveness - number of transfer unit behavior for complex flow arrangements, J. Heat Transfer Trans. ASME 126(6), 994-1002, 2004.
  • [39] Mohamed H.A., Entropy Generation in Counter Flow Heat Exchangers, ASME J. Heat Transfer, 128, pp. 87-92, 2006.
  • [40] El-Wakil M.M., Power plant technology, McGraw-Hill, New York, 1984.
  • [41] Fujii T., Resarch Problems For Improving the Performance of Power Plant Condensers, Condensation and Condenser Design, ASME, pp. 487-498, 1993.
  • [42] Fujii T., Uehara H., Hirata K., Oda K., Heat transfer and flow resistance in condensation of low pressure steam flowing through tube banks, Int. Journal Heat Mass Transfer, 15, pp. 247-259, 1972.
  • [43] Malin M.R., Modelling flow in an experimental marine condenser, Int. Comm. Heat Transfer, vol. 24, no. 5, pp. 597-608, 1997.
  • [44] Prieto M.M., Suarez I.M., Montanes E., Analysis of the thermal performance of a church window steam condenser for different operational conditions using three models, Applied Thermal Engineering, No. 23, pp. 163-178, 2003.
  • [45] Ravigururajan T.S., Bergles A.E., Optimization of in-tube enhancement for large evaporators and condensers, Energy, vol. 21, pp. 421-432, 1996.
  • [46] Ramón I.S., Gonzalez M.P., Numerical study of the performance of a church window tube bundle condenser, Int. J. Therm. Sci., 40, pp. 195-204, 2001.
  • [47] Zhang C., Sousa A.C.M., Venart J.E.S., The Numerical and Experimental Study of a Power Plant Condenser, Journal of Heat Transfer, vol. 115, pp. 435-445, 1993.
  • [48] Zhang C., Sousa A.C.M., Venart J.E.S., Numerical Simulation of Different Types of Steam Surface Condensers, Journal of Energy Resources Technology, Transactions of the ASME, vol. 113, no. 2, pp. 63-70, 1991.
  • [49] Sato K., Taniguchi A., Kamada T., Yoshimura R., Mochida Y., New tube arrangement of condenser for power stations, JSME hit. J. Ser. B: Fluids Thermal Eng., 41, 752-758, 1998.
  • [50] Gong A.C., Zhang X.N., Qin G.Y., Xu Y., Two-dimension numerical analysis and improvement of the fluid flow and heat transfer performance in Daya bay nuclear power station condenser, Power Eng., 24, 576-579, 2004.
  • [51] Zeng H., Meng J., Li Z., Numerical study of a power plant condenser tube arraged applied Thermal Engineering, 40, pp. 294-303, 2012.
  • [52] Chmielniak T., Technologie energetyczne, WNT, Warszawa, 2008.
  • [53] Wróblewski W., Dykas S., Rulik S., Selection of the cooling system configuration for an ultracritical coal-fired power plant, Gliwice, CPOTE, 2012.
  • [54] Dobkiewicz-Wieczorek E., Wpływ konfiguracji połączenia trzech skraplaczy głównych na przyrost mocy elektrycznej turbozespołów dużej mocy, INSTAL 1/2016.
  • [55] Nehrebecki L., Elektrownie cieplne, WNT, Warszawa, 1974.
  • [56] Laudyn D., Pawlik M., Strzelczyk F., Elektrownie, WNT, Warszawa, 1995.
  • [57] Nag P.K., Thermal Power Engineering, Tata McGraw-Hill Education, 2002.
  • [58] Chuang C.C., Sue D.C., Performance effects of combined cycle power plant with variable condenser pressure and loading, Energy 30(10), 1793-1801, 2005.
  • [59] Gholam R.A., Davood T., Energy and exergy analysis of Montazeri Steam Power Plant in Iran, Renewable and Sustainable Energy Reviews, 56, 454-463, 2016.
  • [60] Laković M.S., et.al., Impact of the cold end operating conditions on energy efficiency of the steam power plants, Thermal Science, vol. 14, pp. S53-S66, 2010.
  • [61] Laskowski R., Smyk A., Lewandowski J., Rusowicz A., Cooperation of a Steam Condenser with a Low-pressure Part of a Steam Turbine in Off-design Conditions, American Journal of Energy Research, 3(1), 13-18, 2015.
  • [62] Ganan J., Rahman Al-Kasir A., Gonzalez J.F., Macias A., Diaz M.A., Influence of cooling circulation water on the efficiency of a thermonuclear plant, Appl. Thermal Eng., 25, 485-495, 2005.
  • [63] Regulagadda P., Dincer I., Naterer G.F., Exergy analysis of a thermal power plant with measured boiler and turbine losses, Appl. Therm. Eng., 30(8-9), 970-976, 2010.
  • [64] Wang W., Zeng D., Liu J., Niu Y., Cui C., Feasibility analysis of changing turbine load in power plants using continuous condenser pressure adjustment, Energy, 64, 533-540, 2014.
  • [65] Salij A., Stępień J.C., Praca skraplaczy turbinowych w układach cieplnych bloków energetycznych, Kaprint, Warszawa 2013.
  • [66] Harish R., Subhramanyan E.E., Madhavan R., Vidyanand S., Theoretical model for evaluation of variable frequency drive for cooling water pumps in sea water based once through condenser cooling water systems, Appl. Therm. Eng., 30(14-15), 2051-2057, 2010.
  • [67] Xia L., Liu D., Zhou L., Wang P., Chen Y., Optimization of a seawater once-through cooling system with variable speed pumps in fossil fuel power plants, International Journal of Thermal Sciences, 91, 105-112, 2015.
  • [68] Anozie A.N., Odejobi O.J., The search for optimum condenser cooling water flow rate in a thermal power plant, Applied Thermal Engineering, 31, 4083-4090, 2011.
  • [69] Laskowski R., Smyk A., Lewandowski J., Rusowicz A., Grzebielec A., Selecting the cooling water mass flow rate for a power plant under variable load with entropy generation rate minimization, Energy, 107, 725-733, 2016.
  • [70] Błaszczyk A., Głuch J., Gardzilewicz A., Operating and economic conditions of cooling water control for marine steam turbine condensers, Polish Maritime Research, 3(70), vol. 18, pp. 48-54, 2011.
  • [71] Xia L., Liu D., Zhou L., Wang F., Wang P., Optimal number of circulating water pumps in a nuclear power plant, Nuclear Engineering and Design, 288, 35-41, 2015.
  • [72] Beckman G., Heil G., Mathematische Modelle für die Beurteilung von Kraftwerksprozessen, EKM Mitteillungen, 10, 1965.
  • [73] Laskowski R., Smyk A., Rusowicz A., Grzebielec A., Determining the Optimum Inner Diameter of Condenser Tubes Based on Thermodynamic Objective Functions and Economic Analysis, Entropy, 18(12), 2016.
  • [74] Khalifeh Soltan B., Saffar-Avval M., Damangir E., Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing, Appl. Therm. Eng., 24, 2801-2810, 2004.
  • [75] Fertaka S., Thibault J., Gupta Y., Design of shell-and-tube heat exchangers using multiobjective optimization, International Journal of Heat and Mass Transfer, 60, 343-354, 2013.
  • [76] Allen B., Louis Gosselin L., Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube condensers, Int. J. Energy Res., 32, 958-969, 2008.
  • [77] Wildi-Tremblay P., Gosselin L., Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance, Int. J. Energy Res., 31, 867-885, 2007.
  • [78] Caputo A.C., Pelagagge P.M., Salini P., Heat exchanger design based on economic optimization, Appl. Therm. Eng. 28, 1151-1159, 2008.
  • [79] Abazar V.A., Majid A., Economic optimization of shell and tube heat exchanger based on constructal theory, Energy, 36, 1087-1096, 2011.
  • [80] Caputo A.C., Pelagagge P.M., Salini P., Heat exchanger design based on economic optimisation, Applied Thermal Engineering, 28, 1151-1159, 2008.
  • [81] Hajabdollahi H., Ahmadi P., Dincer I., Thermoeconomic optimization of a shell and tube condenser using both genetic algorithm and particle swarm, International Journal of Refrigeration, 34,1066-1076, 2011.
  • [82] Sadeghzadeh H., Ehyaei M.A., Rosen M.A., Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms, Energy Conversion and Management, 93, 84-91, 2015.
  • [83] Selbas R., Kizilkan O., Reppich M., Anew design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view, Chemical Engineering and Processing, 45, 268-275, 2006.
  • [84] Patel V.K., Rao R.V., Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique, Applied Thermal Engineering, 30, 1417-1425, 2010.
  • [85] Arzu S.S., Bayram K., Ulas K., Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm, Energy Conversion and Management, 52, 3356-3362, 2011.
  • [86] Ozcelik Y., Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm, Appl. Therm. Eng., 27, 1849-1856, 2007.
  • [87] Eryener D., Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers, Energy Conversion and Management, 47, 1478-1489, 2006.
  • [88] Can A., Buyruk E., Eryener D., Exergoeconomic analysis of condenser type heat exchangers, Exergy, an International Journal, 2, 113-118, 2002.
  • [89] Sanaye S., Hajabdollahi H., Multi-objective optimization of shell and tube heat exchangers, Appl. Therm. Eng., 30, 1937-1945, 2010.
  • [90] Ponce-Ortega J.M., Serna-González M., Jiménez-Gutiérrez A., Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers, Applied Thermal Engineering, 29, 203-209, 2009.
  • [91] Ayala H.V.H., Keller P., Morais M.F., Mariani V.C., Coelho L.S., Rao R.V., Design of heat exchangers using a novel multiobjective free search differential evolution paradigm, Applied Thermal Engineering, 94, 170-177, 2016.
  • [92] Muralikrishna K., Shenoy U.V., Heat exchanger design targets for minimum area and cost, Chemical Engineering Research and Design, 78, 161-167, 2000.
  • [93] Tol H.I., Svendsen S., Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low energy buildings: a case study in Roskilde, Denmark, Energy, 38(1), 276-90, 2012.
  • [94] Nussbaumer T., Thalmann S., Influence of system design on heat distribution costs in district heating, Energy, 101, 496-505, 2016.
  • [95] Smyk A., Pietrzyk Z., Dobór średnicy rurociągów w sieci ciepłowniczej z uwzględnieniem optymalnych prędkości wody sieciowej, Rynek Energii, 6(97), 1-8, 2011.
  • [96] Murat J., Smyk A., Dobór średnicy rurociągów w układzie rozgałęźno-pierścieniowym dla przykładowych struktur sieci ciepłowniczej, Instal, 9, 13-19, 2015.
  • [97] Szklowier G.G., Milman O.O., Issledowanije i rasczot kondensacionnych ustrojstw parowych turbin, Energoatomizdat, Moskwa, 1985.
  • [98] Rusowicz A., Laskowski R., Grzebielec A., The numerical and experimental study of two passes power plant condenser, Thermal Science, vol. 21, pp. 353-362, 2017.
  • [99] Szargut J., Termodynamika, PWN, Warszawa, 2000.
  • [100] Laskowski R., Jaworski M., Maximum entropy generation rate in a heat exchanger at constant inlet parameters, Journal of Mechanical and Energy Engineering, vol. 1, 79-86, 2017.
  • [101] Gardzilewicz A., Głuch J., Błaszczyk A., Economic and technical analysis of cooling water control in large-power steam turbines, Turbomachinery, 133, 2008.
  • [102] GateCycleTM - Getting Started and Installation Guide - Optimization and Diagnostic Software, 6th Edition, 2009.
  • [103] Wołowicz M., Badyda K., Milewski J., Model kondensacyjnego bloku energetycznego klasy 800 MW z wykorzystaniem aplikacji Gate CycleTM, Gliwice, Modelowanie Inżynierskie, 42, 473-478, 2011.
  • [104] Laskowski R., Bednarczyk P., Smyk A., Porównanie równoległej i szeregowej konfiguracji skraplaczy w układzie chłodzenia bloku energetycznego dużej mocy, Instal, vol. 10, 4-7, 2017.
  • [105] Laskowski R., Smyk A., Porównanie równoległej i szeregowo-równoległej konfiguracji skraplaczy bloku energetycznego dużej mocy na parametry nadkrytyczne, Chłodnictwo: organ Naczelnej Organizacji Technicznej, vol. 52, 24-28, 2017.
  • [106] Andriuszczenko A.I., Termodynamiczne obliczenia optymalnych parametrów elektrowni cieplnych, WNT, Warszawa, 1965.
  • [107] Smyk A., Wpływ parametrów członu ciepłowniczego elektrociepłowni jądrowej na oszczędność paliwa w systemie paliwowo-energetycznym, Politechnika Warszawska, 1999.
  • [108] Cabezas-Gomez L., Navarro H.A., Saiz-Jabardo J.M., de Morais Hanriot S., Maia C.B., Analysis of a new cross flow heat exchanger flow arrangement - Extension to several rows, International Journal of Thermal Sciences, 55, 122-132, 2012.
  • [109] Fakheri A., Efficiency and effectiveness of heat exchanger series, Journal of Heat Transfer, 130(8), 2008.
  • [110] Fakheri A., Heat exchanger efficiency, Journal of Heat Transfer, 129(9), 1268-1276, 2007.
  • [111] Bradley J.C., Counterflow, crossflow and cocurrent flow heat transfer in heat exchangers: analytical solution based on transfer units, Heat Mass Transfer, 46,381-394, 2010.
  • [112] Laskowski R.M., A mathematical model of a steam condenser in off-design operation, Journal of Power Technologies, vol. 92, no. 2, pp. 101-108, 2012.
  • [113] Szapajko G., Rusinowski H., Mathematical modelling of steam-water cycle with auxiliary empirical functions application, Archives of Thermodynamics, 31(2), 165-183, 2010.
  • [114] Szapajko G., Rusinowski H., Empirical modelling of heat exchangers in a CRP plant with bleed-condensing turbine, Archives of Thermodynamics, 29(4), 177-184, 2008.
  • [115] Laskowski R., Lewandowski J., Simplified and approximated relations of heat transfer effectiveness for a steam condenser, Journal of Power Technologies, 92(4), 258-265, 2012.
  • [116] Laskowski R., Smyk A., Rusowicz A., An Approximate Relation for Describing the Performance of a Condenser in Off-design Conditions, British Journal of Applied Science & Technology, 12(6), 1-11, 2016.
  • [117] Laskowski R., The black box model of a double-tube counter-flow heat exchanger, Heat and Mass Transfer, 51(8), 1111-1119, 2015.
  • [118] Laskowski R., The concept of a new approximate relation for exchanger heat transfer effectiveness for a cross-flow heat exchanger with unmixed fluids, Journal of Power Technologies, 91(2), 93-101, 2011.
  • [119] Laskowski R., Smyk A., Analiza warunków pracy skraplacza energetycznego z wykorzystaniem pomiarów i modelu aproksymacyjnego, Rynek Energii, 110-115, 2014.
  • [120] Standards for Closed Feedwater Heaters, sixth ed., Heat Exchanger Institute (HEI), Cleveland, Ohio, 1998.
  • [121] Xu J., Yang T., Sun Y., Zhou K., Shi Y., Research on varying condition characteristic of feedwater heater considering liquid level, Applied Thermal Engineering, vol. 67, pp. 179-189, 2014.
  • [122] Laskowski R.M., The application of the Buckingham theorem to modeling high-pressure regenerative heat exchangers in changed conditions, Journal of Power Technologies, vol. 91, no. 4, pp. 198-205, 2011.
  • [123] Grzebielec A., Rusowicz A., Thermal Resistance of Steam Condensation in Horizontal Tube Bundles, Journal of Power Technologies, vol. 91, no. 1, pp. 41-48, 2011.
  • [124] Laskowski R., Relations for steam power plant condenser performance in off-design conditions in the function of inlet parameters and those relevant in reference conditions, Applied Thermal Engineering, 103, 528-536, 2016.
  • [125] Medica V., Pavković B., Mrzljak V., Numerical model for on-condition monitoring of condenser in coal-fired power plants, International Journal of Heat and Mass Transfer, vol. 117, 912-923, 2018.
  • [126] Wiśniewski S., Wiśniewski T., Wymiana ciepła, PWN, Warszawa, 1997.
  • [127] Chen J., Comments on improvements on a replacement for the logarithmic mean, Chemical Engineering Science, 42, 2488-2489, 1987.
  • [128] Ogulata R.T., Doba F., Experiments and entropy generation minimization analysis of a crossflow heat exchanger, Int. J. Heat Mass Transfer, 41(2), 373-381, 1998.
  • [129] Gupta A., Sarit K., Second law analysis of crossflow heat exchanger in the presence of axial dispersion in one fluid, Energy, 32,664-672, 2007.
  • [130] Szega M., Application of Data Reconciliation Method for Increase of Measurements Reliabi
  • [131] Szega M., Application of the entropy information for the optimization of additional measurements location in thermal systems, Archives of Thermodynamics, vol. 32, no. 3, 215-229, 2011.
  • [132] Hussaini I.S., Zubair S.M., Antar M.A., Area allocation in multi-zone feedwater heaters, Energy Conversion and Management, vol. 48, pp. 568-575, 2007.
  • [133] Radwański E., Skowroński P., Twarowski A., Problemy modelowania systemów energotechnologicznych, Politechnika Warszawska, ITC PW, Warszawa, 1993.
  • [134] Laskowski R., Wawrzyk K., Comparison of two simple mathematical models for feed water heaters, Journal of Power Technologies, vol. 91, no. 1, pp. 14-22, 2011.
  • [135] Laskowski R., Smyk A., Aproksymacyjny model cieplno-przepływowy podgrzewacza regeneracyjnego, Rynek Energii, vol. 6, no. 109, pp. 77-78, 2013.
  • [136] Antar M.A., Zubair M.S., The impact of fouling on performance evaluation of multi-zone feedwater heaters, Applied Thermal Engineering, vol. 27, pp. 2505-2513, 2007.
  • [137] Elfeituri A.I., The influence of heat transfer conditions in feedwater heaters on the exergy losses and the economical effects of a steam power station, Ph.D. thesis, Warsaw University of Technology, 1996.
  • [138] Weber G.E., Worek W.M., Development of a method to evaluate the design performance of a feedwater heater with a short drain cooler, Journal of Engjneering for Gas Turbines and Power, Transactions of the ASME (ISSN 0742-4795), vol. 116, no. 2, pp. 434-441, 1994.
  • [139] Weber G.E., Worek W.M., The application of a method to evaluate the design performance of a feedwater heater with a short drain cooler, ASME J. Eng. Gas Turbines Power, vol. 117, pp. 384-387, 1995.
  • [140] Kurpisz L., Modelowanie matematyczne regeneracyjnych wymienników ciepła z uwzględnieniem zmiennych warunków pracy, Politechnika Warszawska, 1972.
  • [141] Barszcz T., Czop P., A Feedwater Heater Model Intended for Model-Based Diagnostics Power Plant Installations, Applied Thermal Engineering, vol. 31, no. 8-9, pp. 1357-131
  • [142] Krzyżanowski J.A., Głuch J., Diagnostyka cieplno-przepływowa obiektów energetycznych, IMP PAN, Gdańsk, 2004.
  • [143] Badyda K., Zagadnienia modelowania matematycznego instalacji energetycznych, Politechnika Warszawska, WPW, 2001.
  • [144] Ponce-Ortega J.M., Serna-González M., Jiménez-Gutiérrez A., Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers, Applied Thermal Engineering pp. 203-209, 2009.
  • [145] Allen B., Savard-Goguen M., Gosselin L., Optimizing heat exchanger networks with genetic algorithms for designing each heat exchanger including condensers, Applied Themal Engineering, vol. 29, pp. 3437-3444, 2009.
  • [146] Spalding D. Brian, Taborek J., HEDH - Heat exchanger design handbook, Hemisphere Publishing Corporation, USA, 1983.
  • [147] Palen J.W., Heat Exchanger Sourcebook, Hemisphere Publishing, Washington, 1986.
  • [148] Saunders E.A.D., Heat Exchangers, Longman Scientific & Technical, Harlow, Essex, England, 1988.
  • [149] Walski T.M., Analysis of water distribution systems, New York, 1994.
  • [150] Praca zbiorowa, Market-based advanced coal power systems-final report, U.S. Department of Energy, Washington, 1999.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-295a6765-9407-41e9-87e7-2f4510f7cbe1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.