Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider Young measures associated with elements of sequences of m-oscillating functions. Such Young measures are homogeneous and absolutely continuous with respect to the Lebesgue measure. The total slope of an m-oscillating function is defined, and the basic property of a set of Young measures associated with m-oscillating functions is stated. Next, the relation between weak L1 convergence of densities and weak convergence, with respect to the total variation norm, of respective Young measures is investigated. The last result unifies and generalizes most examples of Young measures usually presented in the literature.
Rocznik
Tom
Strony
101--111
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
- 1. Ball, J.M. (1989). A version of the fundamental theorem for Young measures. PDEs and Continuum Models of Phase Transitions, Lecture Notes in Physics, (344), Springer, 207-215.
- 2. Valadier, M. (1990). Young measures. Methods of Nonconvex Analysis. Lecture Notes in Mathematics, (1446), Springer, 152-188.
- 3. Pedregal, P. (2000). Variational Methods in Nonlinear Elasticity. Society for Industrial and Applied Mathematics.
- 4. Florescu, L.C., & Godet-Thobie, Ch. (2012). Young Measures and Compactness in Measure Spaces. Walter de Gruyter GmbH & Co. KG.
- 5. Roubiˇcek, T. (2020). Relaxation in Optimization Theory and Variational Calculus, second edition. Walter de Gruyter.
- 6. Rindler, P. (2018). Calculus of Variations. Springer International Publishing AG, part of Springer Nature.
- 7. Muller, S. (1999). Variational Models for Microstructure and Phase Transitions. Calculus of variations and geometric evolution problems, Lecture Notes in Mathematics, (1713), Springer, 85-210.
- 8. Grzybowski, A.Z., & Puchała, P. (2017). Monte Carlo simulation in the evaluation of the Young functional values. IEEE 14th International Scientific Conference on Informatic, 221-226, DOI: 10.1109/INFORMATICS.2017.8327250.
- 9. Grzybowski, A.Z., & Puchała, P. (2018). On Young functionals related to certain class of rapidly oscillating sequences. IAENG Int. J. Appl. Math., 48(4), 381-386.
- 10. Grzybowski, A.Z., & Puchała, P. (2019). Classical Young Measures Generated by Oscillating Sequences with Uniform Representation. Transactions on Engineering Technologies. WCECS 2017, Springer, 1-11.
- 11. Jisha, C.R. (2022). Q-functional applications. Mathematica Applicanda, 50(2), 217-233.
- 12. Jisha, C.R. (2022). Q-measure-valued solution of a hyperbolic partial differential equation. PDEs Appl. Math., 6, 1-9.
- 13. Emmrich, E., & Puhst, D. (2015). Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics. Nonlinearity, 28, 285-307.
- 14. Fjordholm, U. S., Mishra, S., & Tadmor. E. (2016). On the computation of measure-valued solutions. Acta Numerica, 25, 567-679.
- 15. Gallenmuller, D., & Wiedemann, E. (2021). On the selection of measure-valued solutions for the isentropic Euler system. J. Diff. Eq., 271, 979-1006.
- 16. Puchała, P. (2023). Certain convergence results for homogeneous singular Young measures. J. Appl. Math. Comput. Mech., 22(4), 44-52.
- 17. Puchała, P. (2017). A simple characterization of homogeneous Young measures and weak L1 convergence of their densities. Optimization, 66(2), 197-203.
- 18. Benedetto, J.J., & Czaja, W. (2009). Integration and Modern Analysis. Boston: Birkhauser.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-295a1dfc-181a-4145-97fe-7aadf5c675e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.