Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The coupled fluid/solid heat transfer computations are performed to predict the temperatures reached in the rotating disc systems. An efficient finite element analysis (FEA) and computational fluid dynamics (CFD) thermal coupling technique is developed and demonstrated. The thermal coupling is achieved by an iterative procedure between FEA and CFD calculations. In the coupling procedure, FEA simulation is treated as unsteady for a given transient cycle. To speed up the thermal coupling, steady CFD calculations are employed, considering that fluid flow time scales are much shorter than those for the solid heat conduction and therefore the influence of unsteadiness in fluid regions is negligible. To facilitate the thermal coupling, the procedure is designed to allow a set of CFD models to be defined at key time points/intervals in the transient cycle and to be invoked during the coupling process at specified time points. The computational procedure is applied to predict heat transfer characteristics of a free rotating disc.
Czasopismo
Rocznik
Tom
Strony
169--192
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- ITMO University, St Petersburg, 197101, Russia
autor
- Kingston University, London, SW15 3DW, United Kingdom
Bibliografia
- [1] Pareschi G., Frapolli N., Chikatamarla S.S., Karlin I.V.: Conjugate heat transfer with the entropic lattice Boltzmann method. Phys. Rev. E, 94(2016), 013305.
- [2] Orlandi P., Sassun D., Leonardi S.: DNS of conjugate heat transfer in presence of rough surfaces. Int. J. Heat Mass Tran. 100(2016), 250–266.
- [3] Dang D.-D., Pham X.-T., Labbe P., Torriano F., Morissette J.-F., Hudon C.: CFD analysis of turbulent convective heat transfer in a hydro-generator rotorstator system. Appl. Therm. Eng. 130(2018), 17–28.
- [4] Hwang S., Son C, Seo D., Rhee D.-H., Cha B.: Comparative study on steady and unsteady conjugate heat transfer analysis of a high pressure turbine blade. Appl. Therm. Eng. 99(2016), 765–775.
- [5] Okita Y., Yamawaki S.: Conjugate heat transfer analysis of turbin erotor–stator systems. ASME Paper, 2002, GT2002-30615.
- [6] Bohn D., Ren J., Kusterer K.: Conjugate heat transfer analysis for film cooling configurations with different hole geometries. ASME Paper, 2003, GT2003-38369.
- [7] Kusterer K., Bohn D., Sugimoto T., Tanaka R.: Conjugate calculations for a film-cooled blade under different operatingconditions. ASME Paper, 2004, GT2004-53719.
- [8] Lewis L.V., Provins J.I.: A non-coupled CFD–FE procedure to evaluate windage and heat transfer in rotor–stator cavities. ASME Paper, 2004, GT2004-53246.
- [9] Saunders K., Alizadeh S., Lewis L.V., Provins J.: The use of CFD to generate heat transfer boundary conditions for a rotor–stator cavity in a compressor drum thermal model. ASME Paper, 2007, GT2007-28333.
- [10] Reyhani M.R., Alizadeh M., Fathi A., Khaledi H.: Turbine blade temperature calculation and life estimation – a sensitivity analysis. Propulsion and Power Research 2(2013), 2, 148–161.
- [11] Li H., Kassab A.J.: A Coupled FVM/BEM approach to conjugate heat transfer in turbine blades. ASME Paper, 1994, GT1994-1981.
- [12] Louda P., Svacek P., Fort J., Halama J., Kozel K: Numerical simulation of turbine cascade flow with blade-fluid heat exchange. Appl. Math. Comput. 219(2013), 13, 7206–7214.
- [13] Illingworth J., Hills N., Barnes C.: 3D fluid–solid heat transfer coupling of an aero-engine preswirl system. ASME Paper, 2005, GT2005-68939.
- [14] Mirzamoghadam A.V., Xiao Z.: Flow and heat transfer in an industrial rotorstator rim sealing cavity. J. Eng. Gas Turb. Power 124(2002), 1, 125–132.
- [15] Verdicchio J.A., Chew J.W., Hills N.J.: Coupled fluid/solid heat transfer computation for turbine discs. ASME Paper, 2001, GT2001-0123.
- [16] Moore T.J., Jones M.R.: Solving nonlinear heat transfer problems using variation of parameters. Int. J. Therm. Sci. 93(2015), 29–35.
- [17] Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. M. 3(1974), 2, 269–289.
- [18] Kato M., Launder B.E.: The modelling of turbulent flow around stationary and vibrating square cylinders. Proc. 9th Symp. Turbulent Shear Flows, 16–18 Aug. 1993, Kyoto, 10.4.1–10.4.6.
- [19] Chen W.L., Lien F.S., Leschziner M.A.: Computational modelling of turbulent flow in turbomachine passage with low-Re two-equation models. Computational Fluid Dynamics. John Wiley & Sons, Chicester 1994, 517–524.
- [20] Leschziner M.A., Rodi W.: Calculation of annular and twin parallel jets using various discretization schemes and turbulent-model variations. J. Fluid Eng. 103(1981), 353–360.
- [21] Isaev S.A., Baranov P.A., Usachov A.E., Zhukova Yu., Vysotskaya A.A., Malyshkin D.A.: Simulation of the turbulent air flow over a circular cavity with a variable opening angle in an u-shaped channel. J. Eng. Phys. Thermophys. 88(2015), 4, 902–917.
- [22] Isaev S., Baranov P., Popov I., Sudakov A., Usachov A., Guvernyuk S., Sinyavin A., Chylunin A., Mazo A., Kalinin E.: Ensuring safe descend of reusable rocket stages – Numerical simulation and experiments on subsonic turbulent air flow around a semi-circular cylinder at zero angle of attack and moderate Reynolds number. Acta Astronaut. 2017, 10.1016/j.actaastro.2017.10.028.
- [23] Larson M.G., Bengzon F.: The finite element method: theory, implementation, and applications. Springer, 2013.
- [24] Volkov K.: Multigrid and preconditioning techniques in CFD applications. In: CFD Techniques and Thermo-Mechanical Applications (Z. Driss, B. Necib, H.-C. Zhang, Eds.), Springer Int. Publ., 2018, 83–149.
- [25] Dorfman L.A.: Hydrodynamic resistance and heat loss of rotating solids. Edinburgh: Oliver & Boyd, 1963.
- [26] Northrop A., Owen J.M.: Heat transfer measurements in rotating disc systems – the free disc. Int. J. Heat Fluid Fl. 9(1988), 1, 19–26.
Uwagi
EN
This work was financially supported by the Ministry of Education and Science of Russian Federation (agreement No 14.578.21.0203, unique identifier of applied scientific research RFMEFI57816X0203).
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-295551b0-0e35-45cc-898c-8456353deb62