Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Improvised explosive devices are responsible for death and injury of thousands of people (both civilians and soldiers) annually. They are often produced by simple home-made modifications of the old artillery shells. One of the ways of preventing modification of currently used artillery shells intended to make it more difficult to use as IEDs was analyzed in the article. A special safety barrier placed between the fuse and the explosive in order to block the access to the explosive after unscrewing the fuse was proposed. The barrier was used also to protect explosive against detonation with commonly used electric initiation systems. Therefore the main aim of the analyses presented in the article was to determine a critical barrier thickness for which the acceptor has 50% probability of being detonated. The research included experimental gap-tests as well as numerical reproduction of the phenomenon in the Impetus AFEA software. Various types of electric initiation systems were analyzed differing with material of the body, type and amount of explosive used as well as the shape of the frontal part of the detonator (flat or with hemispherical cavity). Critical barrier thicknesses were determined for individual variants of donor-gap-acceptor systems. Numerical model of the phenomenon was defined and validated against experimental data. Small differences between the experimental and numerical results allow to use the model to initial evaluation of the effectiveness of different barrier variants.
Wydawca
Rocznik
Tom
Strony
333--348
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
autor
- Military Institute of Armament Technology, ul. Wyszynskiego 7, 05-220 Zielonka, Poland
autor
- Military Institute of Armament Technology, ul. Wyszynskiego 7, 05-220 Zielonka, Poland
autor
- Military Institute of Armament Technology, ul. Wyszynskiego 7, 05-220 Zielonka, Poland
autor
- Military Institute of Armament Technology, ul. Wyszynskiego 7, 05-220 Zielonka, Poland
Bibliografia
- 1. Overton I., Davies R., and Tumchewics L. Improvised Explosive Devices: Past, Present And Future, Action on armed violence AOAV, 405 Mile End Road, London E3 4PB, https://aoav.org.uk/wp-content/uploads/2020/10/IEDs-past-present-and-future.pdf
- 2. https://d2071andvip0wj. cloudfront. net/exploiting-disorder-al-qaeda-and-the-islamic-state. pdf. J. 2020 International Crisis Group, Exploiting Disorder: Al- Qaeda and the Islamic State, Mar. 2016.
- 3. Ramasamy A., Masouros S. D., Newell N., et al. In-vehicle extremity injuries from improvised explosive devices: Current and future foci, in Philosophical Transactions of the Royal Society B: Biological Sciences, 2011. https://doi.org/10.1098/rstb.2010.0219
- 4. https://en.wikipedia.org/wiki/Improvised_explosive_device - web page containing general description of the improvised explosive device idea and principles. Access - December 2023.
- 5. Krysiński B., Borkowski J. Patent No. PL 222935, Method of blocking direct access to the main chargé of an explosive material elaborated in the shell, in particular a projectile, by means of a special protective barrier. (in polish: Sposób zablokowania bezpośredniego dostępu do zasadniczego ładunku materiału wybuchowego zaelaborowanego w skorupie środka bojowego, zwłaszcza pocisku za pomocą specjalnego przegrody zabezpieczającej), 14.03.2013, Polish Patent Office.
- 6. Hudson L. C. and Bernecker R. R. Numerical calibration of donor systems for some GAP tests, Propellants, Explosives, Pyrotechnics, 1995, 20(6), https://doi.org/10.1002/prep.19950200609
- 7. Bourne N. K., Milne A., and Biers R. A. Measurement of the pressure pulse from a detonating explosive, J Phys D Appl Phys, 2005, 38(12), https://doi.org/10.1088/0022-3727/38/12/019
- 8. Qiang H. F., Liu Y. X., Wang D. D., Wang X. R., Geng B., and Wang G. Numerical simulation study of composite solid propellant small scale gap test, AIP Adv, 2021, 11(1), https://doi.org/10.1063/5.0039853
- 9. Yan D., Bian D., Zhao J., and Niu S. Study of the electrical characteristics, shock-wave pressure characteristics, and attenuation law based on pulse discharge in water, Shock and Vibration, 2016, 2016, https://doi.org/10.1155/2016/6412309
- 10. Qing Xue Z., Li S., Liang Xin C., Ping Shi L., and Bin Wu H. Modeling of the whole process of shock wave overpressure of free-field air explosion, Defence Technology, 2019, 15(5), https://doi.org/10.1016/j.dt.2019.04.014
- 11. Karinski Y. S., Feldgun V. R., and Yankelevsky D. Z. Effect of soil locking on the cylindrical shock wave’s peak pressure attenuation, J Eng Mech, 2009, 135(10), https://doi.org/10.1061/(asce)em.1943-7889.0000042
- 12. Bai Z., Duan Z., Wen L., Zhang Z., Ou Z., and Huang F. Embedded manganin gauge measurements and modelling of shock initiation in HMX-Based pbx explosives with different particle sizes and porosities, Propellants, Explosives, Pyrotechnics, 2020, 45(6), https://doi.org/10.1002/prep.201900376
- 13. Bai Z., Duan Z., Wen L., Zhang Z., Ou Z., and Huang F. Shock initiation of multiomponent insensitive PBX explosives: Experiments and MC-DZK mesoscopic reaction rate model, J Hazard Mater, 2019, 369, https://doi.org/10.1016/j.jhazmat.2019.02.028
- 14. Ferdowsi M., Yazdani F., Omidkhah M. R., and Keshavarz M. H. Reliable prediction of shock sensitivity of energetic compounds based on small-scale gap test through their electric spark sensitivity, Z Anorg Allg Chem, 2018, 644(16), ttps://doi.org/10.1002/zaac.201800190
- 15. Lu J. P., Lochert I. J., Daniel M. A., and Franson M. D. Shock sensitivity studies for PBXN-109, Propellants, Explosives, Pyrotechnics, 2016, 41(3), https://doi.org/10.1002/prep.201500336
- 16. Nandlall D. Determination of a measure of sensitivity to shock detonate an explosive as a function of its shock parameters, Propellants, Explosives, Pyrotechnics, 2019, 44(11), https://doi.org/10.1002/prep.201800383
- 17. Kubota S., Ogata Y., Wada Y., et al. Observation of shock initiation process in gap test, in AIP Conference Proceedings, 2006. https://doi.org/10.1063/1.2263511
- 18. Price D. Gap Tests And How They Grow, in Minutes of the Explosives Safety Seminar (22nd), I, Anaheim, Califoria: Naval Surface Weapons Center, Aug. 1986.
- 19. Kubota S., Liu Z., Otsuki M., Nakayama Y., Ogata Y., and Yoshida M. A numerical study of sympathetic detonation in gap test, in Materials Science Forum, 2004. https://doi.org/10.4028/www.scientific.net/msf.465-466.163
- 20. Kubota S., Liu Z., Saburi T., Ogata Y., and & Yoshida M. Simulation of sympathetic detonation by a CIP Eulerian code, 2005, Accessed: Jan. 11, 2024. [Online]. Available: www.witpress.com,
- 21. Keshavarz M. H., Motamedoshariati H., Pouretedal H. R., Tehrani M. K., and Semnani A. Prediction of shock sensitivity of explosives based on small-scale gap test, J Hazard Mater, 2007, 145(1–2), https://doi.org/10.1016/j.jhazmat.2006.10.091
- 22. Maček A. Sensitivity of explosives, Chem Rev, 1962, 62(1), 41–63, https://doi.org/10.1021/CR60215A003 /ASSET/CR60215A003.FP.PNG_V03
- 23. Davies P. A. Accidental initiation of condensed phase explosives during road and rail transport, J Hazard Mater, 1994, 38(1), https://doi.org/10.1016/0304-3894(93)00003-L
- 24. Kim B., Park J., and Yoh J. J. Analysis on shock attenuation in gap test configuration for characterizing energetic materials, J Appl Phys, 2016, 119(14), https://doi.org/10.1063/1.4945777
- 25. Xia M., Wang J., and Jiang N. Critical shock wave initiation pressure of typical energetic materials, Sci. Technol. Energ. Mater., 2022, 83(2).
- 26. Matsumura T., Ishikawa K., Homae T., Wakabayashi K., and Nakayama Y. Card gap tests of plastic high explosive by using mortar, light weight concrete and sand as gap materials, Science and Technology of Energetic Materials, 2010, 71(5–6).
- 27. Tan B., Long X., Peng R., Li H., Jin B., and Chu S. On the shock sensitivity of explosive compounds with small-scale gap test, Journal of Physical Chemistry A, 2011, 115(38), https://doi.org/10.1021/jp204814f
- 28. Schwer L. E. Impact and Detonation of COMP-B An Example using the LS-DYNA ® EOS: Ignition and Growth of Reaction in High Explosives, 12th International LS-DYNA ® Users Conference, 2012.
- 29. Urtiew P. A., Vandersall K. S., Tarver C. M., Garcia F., and Forbes J. W. Shock initiation of composition b and C-4 explosives: Experiments and modeling, Russian Journal of Physical Chemistry B, 2008, 2(2), https://doi.org/10.1134/S1990793108020036
- 30. Urtiew P. A., Vandersall K. S., Tarver C. M., Garcia F., and Forbes J. W. Shock initiation experiments and modeling of composition b and c-4, in Proceedings of the 13th International Detonation Symposium, IDS 2006, 2006.
- 31. Balagansky I. A. and Stepanov A. A. Numerical simulation of Composition B high explosive chargé desensitization in gap test assembly after loading by precursor wave, Shock Waves, 2016, 26(2), https://doi.org/10.1007/s00193-015-0584-1
- 32. Żochowski P. and Warchoł R. Experimental and numerical study on the influence of shaped charge liner cavity filing on jet penetration characteristics in steel targets, Defence Technology, 2023, 23, https://doi.org/10.1016/j.dt.2022.09.007
- 33. https://www.impetus.no/ - web page containing general description of the Impetus AFEA numerical analysis software used and the computational methods available. Access - December 2023.
- 34. https://www.abstrao.com/en/gamma-sph-add-on-web page containing general description of the Gamma-SPH particle based (meshless) computational method used in the article. Access - December 2023.
- 35. https://www.impetus.no/support/manual/ - web page containing list of available commands in Impetus AFEA software. Access - December 2023.
- 36. ANSYS Help, Release 16.0, 2015 – a manual built into the ANSYS software containing a description of the commands and material models available for calculations. Access - December 2023.
- 37. Johnson G. R. and Cook W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. The 7th International Symposium on Ballistics, in Proceedings of the 7th International Symposium on Ballistics, 1983.
- 38. LS-DYNA® Keyword User’s Manual; LS-DYNA R12. II, Materials Models. (r:13191), Sep. 2020. A manual for the Ls-Dyna software containing a description of the material models available for calculations. Access - December 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29542fa1-033f-46df-a04f-dfebece19acd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.