Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the corrosion characteristics of Q235 steel and 16Mn steel in the sulfur-containing alkaline solution. The composition and the morphology of the corrosion products were analyzed by XPS and SEM respectively. The electrochemical behavior of Q235 steel and 16Mn steel was evaluated by potentiodynamic polarization curve and EIS. The results indicated that the corrosion rate of Q235 steel is greater than 16Mn steel in the early corrosion. Pitting and selective corrosion appeared on the surface of the two steels, and the surface product layer was granular and defective. XPS and EDS indicate that the structurally stable iron oxide is formed on the surface of the two steels. Electrochemical results show the corrosion kinetics of Q235 steel and 16Mn steel are simultaneously controlled by the charge transfer and ion diffusion, and the formation mechanism of corrosion products was clarified.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
531--540
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wzory
Twórcy
autor
- Guizhou University, College of Materials and Metallurgy, Guiyang, 550025, China
autor
- Guizhou Normal University, School of Mechanical & Electrical Engineering, Guiyang, 550025, China
Bibliografia
- [1] W. Liu, H.W. Yan, W.H. Ma, Miner. Eng. 149 (8), 106237 (2020). DOI: https://doi.org/10.1016/j.mineng.2020.106237
- [2] A. Bhattacharya, P.M. Singh, Corros. Sci. 53, 71-81 (2011). DOI: https://doi.org/10.1016/j.corsci.2010.09.024
- [3] Q.L. Xie, W.M. Chen, Corros. Sci. 86, 252-260 (2014). DOI: https://doi.org/10.1016/j.corsci.2014.05.019
- [4] X.B. Li, F. Niu, G.H. Liu, T.G. Qi, Q.S. Zhou, Z.H. Peng, Trans. Nonferrous Met. Soc. China. 27 (4), 908-916(2017). DOI: https://doi.org/10.1016/S1003-6326(17)60105-5
- [5] Z.W. Liu, H.W. Yan, W.H. Ma, P. Xiong, Mining Metall. Explor. 37 (5), 1617-1626 (2020). DOI: https://doi.org/10.1007/s42461-020-00225-6
- [6] B.L. Quan, J.Q. Li, C.Y. Chen, Mater. Res. Express. 6 (2), 025607 (2019). DOI: https://doi.org/10.1088/2053-1591/aaf0d8
- [7] L. Esteves, M.M.A.M. Schvartzman, W.R.D. Campos, V.F.C. Lins, Corrosion 74 (5), 543-550 (2018). DOI: https://doi.org/10.5006/2558
- [8] H. Feng, H.B. Li, S.C. Zhang, Q. Wang, Z.H. Jiang, G.P. Li, Int. J. Electrochem. Sci. (China) 10 (5), 4116-4128 (2015).
- [9] l. Stockman, S. Ven. Papperstidn. 63 (13), 425 (1960).
- [10] B.L. Quan, J.Q. Li, C.Y. Chen, Int. J. Corrosion 1-6, 8549312 (2016). DOI: https://doi.org/10.1155/2016/8549312
- [11] Q.L. Xie, W.M. Chen, Q. Yang, Corrosion 70 (8), 842-849 (2014). DOI: https://doi.org/10.5006/1206
- [12] B.L. Quan, J.Q. Li, C.Y. Chen. Mater. Res. Express. 7 (3), 03560 2(2020). DOI: https://doi.org/10.1088/2053-1591/ab7d57
- [13] Y. Nie, J.K. Huang, S.Y. Ma, Z.C. Li, Y.K. Shi, X.F. Yang, Applied Surface Science 527 (10), 146915 (2020). DOI: https://doi.org/10.1016/j.apsusc.2020.146915
- [14] L. Kucharikova, T. Liptakova, E. Tillova, M. Bonek, D. Medvecka, Arch. Metall. Mater. 65 (4), 1455-1462 (2020). DOI: https://doi.org/10.24425/amm.2020.133713
- [15] Y.S. Choi, F. Farelas, S. Nesic, A.A.O. Magalhaes, Corrosion 70 (1), 38-47 (2014). DOI: https://doi.org/10.5006/1019
- [16] A. Fragiel, S. Serna, J. Malo-Tamayo, P. Silva, B. Campillo, E. Martinez-Martinez, Eng. Failure Anal. 105, 1055-1068 (2019). DOI: https://doi.org/10.1016/j.engfailanal.2019.06.028
- [17] Y.H. Wu, T.M. Liu, C. Sun, J. Xu, C.K. Yu, Corros. Eng. Sci. Techn. 45 (2), 136-141(2010). DOI: https://doi.org/10.1179/147842209X12559428167643
- [18] H.Z. Cao, J.Y. Zhang, G.Q. Zheng, J.G. Yuan, Corrosion & Protection (China), 23 (10), 427-429 (2002).
- [19] X.L. Zuo, B. Xiang, X. Li, Z.D. Wei, J. Mater. Eng. Perform. 21 (4), 524-529 (2012). DOI: https://doi.org/10.1007/s11665-011-9931-2
- [20] X. Su, Z.X. Yin, Y.F. Cheng, J. Mater. Eng. Perform. 22 (2), 498-504 (2013). DOI: https://doi.org/10.1007/s11665-012-0291-3
- [21] S.S. Xin, M.C. Li, Corros. Sci. 81, 96-101 (2014). DOI: https://doi.org/10.1016/j.corsci.2013.12.004
- [22] R.K. Chasse, P.M. Singh, Metall. Mater. Trans. A. 44 (11), 5039-5053 (2013). DOI: https://doi.org/10.1007/s11661-013-1878-5
- [23] D. Siche, D. Klimm, T. Holzel, A. Wohlfart, Journal of Crystal Growth 270 (1-2), 1-6 (2004). DOI: https://doi.org/10.1016/j.jcrysgro.2004.05.098
- [24] G.C. Liu, J.H. Dong, E.H. Han, K.E. Wei, Corros. Eng. Sci. Technol. (China) 20 (4), 235-238 (2008).
- [25] D. H. Keum, S. Cho, J. H. Kim, et al. Nature Physics 11 (6), 482-486 (2015). DOI: https://doi.org/10.1038/NPHYS3314
- [26] X.D. Bai, Q.L. Qiu, P.F. Sun, D.W. Gan, G. Jiang, Atomic Energy Science and Technology (China) 31 (3), 242-245 (1997).
- [27] J.B. Tan, X.Q. Wu, E.H. Han, X.Q. Liu, X.L. Xu, H.T. Sun, Corros. Sci. 102, 394-404 (2016). DOI: https://doi.org/10.1016/j.corsci.2015.10.032
- [28] T. Sonmez, M.F. Jadidi, K. Kazmanli, O. Birer, M. Urgen, Vacuum 129, 63-73 (2016). DOI: https://doi.org/10.1016/j.vacuum.2016.04.014
- [29] S. Lee, M.J. Kim, N. Choi, S.Y. Hwang, S.W. Chung, S.J. Lee, Y. Yun, Arch. Metall. Mater. 65 (2), 869-78 (2020). DOI: https://doi.org/10.24425/amm.2020.132833
- [30] R. Sriram, D. Tromans, Corros. Sci. 25 (2), 79-91 (1985). DOI: https://doi.org/10.1016/0010-938X(85)90099-X
- [31] M.A. Veloz, I. González, Electrochim. Acta. 48 (2), 135-144 (2002). DOI: https://doi.org/10.1016/S0013-4686(02)00549-2
- [32] J.Y. Zou, D.T. Chin, Corros. Sci. 33 (4), 477-485 (1988). DOI: https://doi.org/10.1016/0013-4686(88)80164-6
- [33] J. Shi, J. Ming, W. Sun et al., Construction and Building Materials 149, 315-26 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.092
- [34] S. K. Tang, Z. X. Dai, G. L. Tan et al., Mater. Chem. Phys. 252 (2020). DOI: https://doi.org/10.1016/j.matchemphys.2020.123177
Uwagi
This work was supported by introduction Talent Fund Project of Guizhou University ([2019]43), Major Science and Technology Projects of Guizhou ([2019]3003) and Natural Science Foundation of Guizhou ([2019]1233).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2953133a-1ad7-4476-98b0-7055e512f359