Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Advanced subjects in mechanical properties of shape memory alloys and polymers are discussed. In the subloop loading under a stress-controlled condition of the shape memory alloy, the transformation-induced stress relaxation appears due to variation in temperature. The enhancement of corrosion and corrosion fatigue life of the shape memory alloy is discussed. The development of a functionally-graded shape memory alloy and polymer is expected to obtain better performance. Three-way motion appears in the shape memory composite with the shape memory alloy and polymer.
Czasopismo
Rocznik
Tom
Strony
447--456
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Japan
autor
- Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Japan
autor
- Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Japan
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- 1. Duerig T.W., Melton, K.N., Stokel D., Wayman C.M., edit., 1990, Engineering Aspects of Shape Memory Alloy, Butterworth-Heinemann, Oxford
- 2. Funakubo H., edit., 1987, Shape Memory Alloys, Gordon and Breach Science Pub., New York
- 3. Hayashi S., 1993, Properties and applications of polyurethane series shape memory polymer, [In:] International Progress in Urethanes, 6, 90-115
- 4. Huang W.M., Yang B., Fu Y.Q., 2012, Polyurethane Shape Memory Polymers, CRC Press, Boca Raton
- 5. Ikeda T., 2015, Analytical investigation of strain loading frequency effect on stress-straintemperature relationship of shape-memory alloy, Archives of Mechanics, 67, 4, 275-291
- 6. Lagoudas D.C., edit., 2008, Shape Memory Alloys, Springer, New York
- 7. Lexcellent C., 2013, Shape-Memory Alloys Handbook, John Wiley & Sons, Hoboken
- 8. Otsuka K., Wayman C.M., edit., 1998, Shape Memory Materials, Cambridge University Press, Cambridge
- 9. Pieczyska E.A., Tobushi H., Gadaj S.P., Nowacki W.K., 2006, Superelastic deformation behaviors based on phase transformation bands in TiNi shape memory alloy, Materials Transactions, 47, 3, 670-676
- 10. Sun Q.P., Matsui R., Takeda K., Pieczyska E., edit., 2017, Advances in Shape Memory Materials, Cham, Springer
- 11. Takeda K., Hayashi S., Ueki K., 2017, Deformation properties of 3D printed shape memory polymer, Key Engineering Materials, 725, 378-382
- 12. Takeda K., Matsui R., Tobushi H., Hayashi S., 2016, Functionally-graded shape memory board, Mechanical Engineering Journal, 3, 6, 1-9, DOI: 10.1289/mej.16-00157
- 13. Tandon G.P., McClung A.J.W., Baur J.W., edit., 2016, Shape Memory Polymers for Aerospace Applications, DEStech Publications, Inc., Lancaster
- 14. Tobushi H., Matsui R., Takeda K., Pieczyska E.A., 2013, Mechanical Properties of Shape Memory Materials, Nova Science Pub., New York
- 15. Yahia L.H., edit,, 2015, Shape Memory Polymers for Biomedical Applications, Elsevier, Amsterdam
- 16. Yamada K., Matsui R., 2016, Improvement of corrosion fatigue strength for TiNi shape memory alloy, Key Engineering Materials, 725, 389-393
- 17. Yin H., He Y.J., Sun Q.P., 2014, Effect of deformation frequency on temperature and stress oscillation in cyclic phase transition of NiTi shape memory alloy, Journal of the Mechanics and Physics of Solids, 67, 100-128
- 18. Ziolkowski A., 2015, Pseudoelasticity of Shape Memory Alloys, Butterworth-Heinemann, Oxford
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-294db3f1-c684-474d-8a44-8206345660f5