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Abstract. In this paper, consensus of a leader-following problem is investigated.
The leader-following problem describes a dynamics of the leader and a number of agents. The
trajectory of the leader is given. The dynamics of each agent depends on the leader trajectory
and others agents’ inputs. Here, the leader-following problem is modeled by a system of non-
linear equations with Caputo fractional derivative, which can be rewritten as a system of
Volterra equations. The main tools in the investigation are the properties of the resolvent
kernel corresponding to the Volterra equations, and Schauder fixed point theorem. By study of
the existence of an asymptotically stable solution of a suitable Volterra system, the sufficient
conditions for consensus of the leader-following problem are obtained.
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1. INTRODUCTION

We investigate the leader-following problem given as a system of equations with Caputo
fractional derivative of the following form

CDα
0+xi(t) = f(t, xi(t)) + γ

N∑

j=1
aij
(
xj(t)− xi(t)

)
+ γdi

(
x0(t)− xi(t)

)
, (1.1)

i = 1, 2, . . . , N , with initial conditions

x0(0) = x?0 ∈ R, xi(0) = x?i ∈ R,

where x0 : R+ → R fulfills condition
CDα

0+x0(t) = f(t, x0(t)). (1.2)
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Here xi : R+ → R, i = 0, 1, . . . , N are unknown functions, γ, aij , di are some real
constants, i, j = 1, 2, . . . , N , R = (−∞,∞) and R+ = [0,∞). Throughout this paper
we assume that f : R+ × R → R is a continuous function. By CDα

0+g(t) we denote
Caputo fractional differential of fractional order α ∈ (0, 1) of a function g : R+ → R.

Definition 1.1 ([12]). Let α ∈ (0, 1). The function

CDα
0+g(t) = 1

Γ(1− α)

t∫

0

g′(τ)
(t− τ)α dτ

is called Caputo left-side derivative (shortly Caputo derivative) of fractional order α
of a function g.

The organization of this paper is the following. In Section 2, the brief history of
fractional calculus is described. Next, in Section 3, the motivation of introduction
of the system (1.1) as a model of flocking is presented, and the definition of consensus
is given. In Section 4, we recall some useful lemmas and we also introduce some
useful notation. Finally, in Section 5, the existence of asymptotically stable solution is
investigated, and the sufficient conditions for consensus of the leader-following problem
are obtained.

2. FRACTIONAL CALCULUS

Fractional calculus is a natural extension of ordinary calculus, where integrals and
derivatives are defined for arbitrary real orders. The origins of fractional calculus go
back to seventeenth century, when in 1695 the derivative of order 0.5 was described by
Leibniz. Since that time, several different fractional derivatives have been introduced,
for example: Riemann–Liouville, Hadamard, Grunwald–Letnikov, Caputo. The choice
of an appropriate fractional derivative (or integral) depends on the studied problem,
and for this reason a large number of works devoted to different fractional operators
appeared in literature. Also nowadays, fractional calculus theory attracts attention of
many authors, see for example [14, 15]. The Caputo and Riemann–Liouville fractional
operators are two broadly used in various fields. It is known (see [17]) that Caputo
is one of the most appropriate operators to discuss problems involving a fractional
differential equation with initial condition.

3. MODEL OF FLOCKING

The motivation for investigation of system (1.1) is the following. Flocking is an
emergent behavior that can be observed in many multi-agent systems and represents
the situation that autonomous agents, using only limited environmental information,
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organize themselves in an ordered motion. For example, Cucker and Smale in [6, 7]
proposed the model to describe the evolution of a flock with a finite quantity of agents.
Girejko et al. investigated consensus models on isolated time scales: Krause’s model
in [9], and Cucker-Smale model (see [10]).

Recently, an interesting topic of investigation is the consensus of a group of agents
with the leader, where the leader is a special agent whose motion is independent
of all the other agents and is followed by all the other ones. In this paper, we
investigate the system proposed by Yu, Jiang and Hu in [19], where the authors
adopted the Caputo fractional operators to model the multi-agent system dynamics
and analyze the consensus by investigation of algebraic graph theory. We described
the dynamics of each agent labeled i, i = 1, 2, . . . , N , by the following nonlinear Caputo
fractional differential equation

CDα
0+xi(t) = f(t, xi(t)) + ui(t), xi(0) = x?i ∈ R, (3.1)

where unknown function xi(t) represents the state of i-th agent at time t ∈ R+, ui is
i-th agent input, which can only use local information from its neighbor agents. The
trajectory of the leader, labeled as i = 0, is given by the following condition

CDα
0+x0(t) = f(t, x0(t)), x0(0) = x?0 ∈ R. (3.2)

Function ui is introduced in the following way. Let aij ∈ R, di ∈ R, for i = 1, 2, . . . , N ,
and let A = [aij ] and

D = diag(d1, d2, . . . , dN ) be a given N ×N matrices. (3.3)

The Laplacian matrix L = [lij ] of A (see [7]) is defined as

lii(t) =
∑

j 6=i
aij and lij(t) = −aij . (3.4)

We investigate the problem given by (3.1), where

ui(t) = γ

N∑

j=1
aij
(
xj(t)− xi(t)

)
+ γdi

(
x0(t)− xi(t)

)
, i = 1, 2, . . . , N, (3.5)

and γ ∈ R. Obviously, by putting (3.5) into (3.1), we get equation (1.1).

Definition 3.1. The multi-agent system (1.1) is said to be achieved the leader-
-following consensus if any solutions x̃(t) and x̄(t) of system (1.1) satisfy

lim
t→∞

|x̃i(t)− x̄i(t)| = 0 for i = 1, 2, . . . , N, (3.6)

and for any initial conditions x̃∗i , x̄∗i ∈ R.
If a solution of system (1.1) satisfies condition (3.6) for x̃∗, x̄∗ ∈ U ⊂ RN ,

the leader-following consensus is achieved locally.
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4. USEFUL LEMMAS AND NOTATIONS

The following lemmas are used in the proof of the main result of this paper.
Lemma 4.1 (Schauder fixed point theorem, [1]). Let Ω be a nonempty, closed and
convex subset of a Banach space and let T : Ω → Ω be a continuous mapping, such
that T (Ω) is a relatively compact subset of Ω. Then T has a fixed point in Ω.

Next, we introduce the following notations z := [z1, z2, . . . , zN ]T , zi : R+ → R,
i = 1, 2, . . . , N . Set

B := {z : R+ → RN , zi is bounded and continuous for any i = 1, 2, . . . , N},

where
‖z‖ := sup

t≥0
{|z(t)|}. (4.1)

Obviously, B is a Banach space with the norm defined by (4.1). Space Cl is defined as
follows:

Cl := {z : there exists lim
t→∞

z(t) ∈ RN}, (4.2)

lim
t→∞

z(t) = [ lim
t→∞

z1(t), lim
t→∞

z2(t), . . . , lim
t→∞

zN (t)]T .

Let ρ > 0 be a constant, and let

Bρ := {z : ‖z‖ ≤ ρ}. (4.3)

Set
Cl,ρ := Cl ∩ Bρ, (4.4)

where Cl is defined by (4.2).
The following definition will be used in the sequel.

Definition 4.2 ([3, 5]). Let ST := {(t, s) : 0 ≤ s ≤ t ≤ T}. Function E(t, s) is weakly
singular on the set ST if it is discontinuous in ST , but for each t ∈ [0, T ], E(t, s) has
at most finitely many discrete discontinuities in the interval 0 ≤ s ≤ t and for every
continuous function φ : [0, T ]→ R

t∫

0

E(t, s)φ(s)ds and
t∫

0

|E(t, s)|ds

both exist and are continuous on [0, T ]. If E(t, s) is weakly singular on ST for every
T > 0, then it is weakly singular on the set S := {(t, s) : 0 ≤ s ≤ t <∞}.

Exactly as in [2], we can derive the following auxiliary lemma. In [2] the functions
considered are assumed to be continuous but the careful analysis of the proof allows
us to formulate it for weakly singular functions. Since the only change arises in the
notion of the integral, i.e. we replace the Riemann Integral with the Lebesgue one and
omit the sets of measure zero.

Assume that K : S → R is weakly singular on the set S.
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Lemma 4.3. Suppose that for a function K, the following hypotheses are fulfilled:
(i) there exists M > 0 such that

t∫

0

|K(t, s)|ds ≤M for t ∈ R+,

(ii) for all β > 0, one has

lim
t→∞

β∫

0

K(t, s)ds = 0,

(iii)

lim
t→∞

t∫

0

K(t, s)ds = 1.

Then for every z ∈ Cl,

lim
t→∞

t∫

0

K(t, s)z(s)ds = lim
t→∞

z(t).

On the space Cl the following compactness criterion holds.
Lemma 4.4 ([15]). A family A ⊂ Cl is relatively compact if and only if
(a) A is uniformly bounded,
(b) A is equicontinuous on compact subsets of R+,
(c) A is equiconvergent.
Definition 4.5. A family A ⊂ Cl is called equiconvergent if for every ε > 0,
there exists a M = M(ε) > 0, such that for all z ∈ A, and for all t1, t2 ≥ M ,
|z(t1)− z(t2)| ≤ ε.

5. EXISTENCE OF A BOUNDED
AND ASYMPTOTICALLY STABLE SOLUTION

Let us consider system (1.1)–(1.2). Setting

x(t) = [x1(t), x2(t), . . . , xN (t)]T , xv0(t) = [x0(t), x0(t), . . . , x0(t)]T ,

F (t, x(t)) =
[
f(t, x1(t)), f(t, x2(t)), . . . , f(t, xN (t))

]T
, (5.1)

F (t, xv0(t)) =
[
f(t, x0(t)), f(t, x0(t)), . . . , f(t, x0(t))

]T
,

we can rewrite system (1.1)–(1.2) as follows:
CDα

0+
(
x(t)− xv0(t)

)
= F (t, x(t))− F (t, xv0(t))− γB

(
x(t)− xv0(t)

)
, (5.2)

where B = D + L, D and L are defined by (3.3) and (3.4), respectively.
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In the following Remark, the equivalency of system (1.1)–(1.2) and equation (5.2)
is proved in the case N = 3. For N 6= 3, the proof is analogous and hence omitted.

Remark 5.1. Assume that N = 3. To show that system (1.1)–(1.2) and equation
(5.2) are equivalent it is enough to prove that

[u1(t), u2(t), u3(t)]T = −γB
(
x(t)− xv0(t)

)
, (5.3)

where ui(t) is defined by (3.5). Set

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 , D =



d1 0 0
0 d2 0
0 0 d3


 .

The Laplacian matrix of matrix A is

L =



a12 + a13 −a12 −a13

−a21 a21 + a23 −a23

−a31 −a32 a31 + a31


 .

We can rewrite (3.5) in the following form:




u1(t) = γ
(
a12
(
x2(t)− x1(t)

)
+ a13

(
x3(t)− x1(t)

)
+ d1

(
x0(t)− x1(t)

))
,

u2(t) = γ
(
a21
(
x1(t)− x2(t)

)
+ a23

(
x3(t)− x2(t)

)
+ d2

(
x0(t)− x2(t)

))
,

u3(t) = γ
(
a31
(
x1(t)− x3(t)

)
+ a32

(
x2(t)− x3(t)

)
+ d3

(
x0(t)− x3(t)

))
.

From the other hand

− γB
(
x(t)− xv0(t)

)

= −γ(L+D)
(
x(t)− xv0(t)

)

= −γ






a12 + a13 −a12 −a13

−a21 a21 + a23 −a23

−a31 −a32 a31 + a31


+



d1 0 0
0 d2 0
0 0 d3









x1(t)− x0(t)
x2(t)− x0(t)
x3(t)− x0(t)




= −γ



a12 + a13 −a12 −a13

−a21 a21 + a23 −a23

−a31 −a32 a31 + a31






x1(t)− x0(t)
x2(t)− x0(t)
x3(t)− x0(t)


− γ



d1
(
x1(t)− x0(t)

)

d2
(
x2(t)− x0(t)

)

d3
(
x3(t)− x0(t)

)




= γ



a12
(
x2(t)− x1(t)

)
+ a13

(
x3(t)− x1(t)

)

a21
(
x1(t)− x2(t)

)
+ a23

(
x3(t)− x2(t)

a31
(
x1(t)− x3(t)

)
+ a32

(
x2(t)− x3(t)


− γ



d1
(
x1(t)− x0(t)

)

d2
(
x2(t)− x0(t)

)

d3
(
x3(t)− x0(t)

)


 .

Hence, (5.3) holds.
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Let us denote
ei(t) = xi(t)− x0(t) for i = 1, 2, . . . , N, (5.4)

and
h(t, e(t)) := F (t, e(t)− xv0(t))− F (t, xv0(t))− (γB + I)e(t), (5.5)

where
h(t, e(t)) =

[
h1(t, e1(t)), h2(t, e2(t)), . . . , hN (t, eN (t))

]T
,

and I denotes the identity N × N matrix. Hence, system (5.2) takes the following
form

CDα
0+e(t) = e(t) + h(t, e(t)), (5.6)

with initial condition

e(0) = [x?1, . . . , x?N ]T − [x?0, . . . , x?0]T ∈ RN .

Equation (5.6) can be transformed into an equivalent Volterra integral equation

e(t) = e(0)− 1
Γ(α)

t∫

0

(t− s)α−1(e(s) + h(s, e(s))
)
ds, (5.7)

where Γ is the gamma function (see [8,11,13]). By C : R+ → R+, we denote the kernel
of Volterra equation (5.7), that is,

C(t− s) := 1
Γ(α) (t− s)α−1, t ≥ s ≥ 0. (5.8)

We observe that the kernels of Volterra integral equations obtained from Caputo
fractional differential equations with 0 < α < 1 are weakly singular. Equation (5.7)
can be written as a Volterra equation

e(t) = e(0)−
t∫

0

C(t− s)
(
e(s) + h(s, e(s))

)
ds. (5.9)

It is known (see, for example [16, p. 191] or [11]), that function e is a solution of
equation (5.7) if and only if e satisfies the variation of constants equation in the form

e(t) = y(t)−
t∫

0

R(t− s)h(s, e(s))ds, (5.10)

where the function y : R+ → RN , y(t) = [y1(t), y2(t), . . . , yN (t)]T , is given by

y(t) = e(0)−
t∫

0

R(t− s)e(0)ds. (5.11)
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The function R is known as the resolvent kernel of C and in its domain satisfied
equation (see [4, p. 55])

R(t− s) = C(t− s)−
t∫

0

C(t− v)R(v − s)ds,

or equivalently

R(t− s) = C(t− s)−
t∫

0

R(t− v)C(v − s)ds.

The resolvent kernel R corresponding to the given kernel C is unique.
For simplicity, putting t := t−s, we can rewrite C and R as a one variable functions.

The resolvent kernel R satisfies the following conditions (see [16,18]) for t ≥ 0

0 ≤ R(t) ≤ C(t), R(t)→ 0 as t→∞, (5.12)

and

if C 6∈ L1[0,∞), then
∞∫

0

R(t)dt = 1. (5.13)

Next, we prove the existence result of asymptotically stable solution of equation
(5.10). Since equations (5.10) and (5.9) are equivalent, in this way we prove an existence
result of asymptotically stable solution of equation (5.9). Using this result, we present
the sufficient conditions for the leader-following consensus of system (3.1)–(3.2), which
is in fact equivalent to system (1.1)–(1.2).

Definition 5.2. A function ẽ is said to be an asymptotically stable solution of equation
(5.10) if for every ε > 0, there exists a M = M(ε), such that for every t ≥M , and for
every other solution ē of equation (5.10), the following inequality holds

‖ẽ(t)− ē(t)‖ ≤ ε.

Notice that, since f is a continuous function, any coordinate of vector of F has this
property. Condition (5.5) and linearity of term γ(B + I)e imply that any coordinate
of function h is continuous, too. Suppose that there exists l =

[
l1, l2, . . . , lN

]T ∈ RN ,
such that

lim
t→∞

h(t, z) = l uniformly with respect to z ∈ Cl,ρ, (5.14)

where h is defined by (5.5). Set

mρ := sup
t≥0
{|h(t, z)| : z ∈ Cl,ρ} <∞. (5.15)
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Since α ∈ (0, 1), by (5.8), we have

C(t) = 1
Γ(α) t

α−1 6∈ L1[0,∞), (5.16)

because of ∞∫

0

|C(t)|dt = 1
Γ(α)

∞∫

0

tα−1dt =∞.

From the above and (5.13), we get
∞∫
0
R(t)dt = 1. By (5.11), we have

lim
t→∞

y(t) = e(0)
(

1− lim
t→∞

t∫

0

R(t− s)ds
)

= e(0)
(

1− lim
u→∞

u+s∫

0

R(u)du
)

= e(0).

Therefore sup
t≥0
{|y(t)|} <∞. Hence, we set

‖y‖ = sup
t≥0
{|y(t)|} =: my. (5.17)

Theorem 5.3. Let condition (5.14) be satisfied. If there exists ρ > 0, such that

my +mρ < ρ, (5.18)

then equation (5.10) has at least one solution e : R+ → RN in Cl,ρ, where Cl,ρ is
defined by (4.4). Moreover, every solution of equation (5.10) in Cl,ρ is asymptotically
stable.

Proof. Notice that Cl,ρ is a nonempty closed and convex subset of the Banach space B.
For e ∈ Cl,ρ, we define map T

(Te)(t) = y(t)−
t∫

0

R(t− s)h(s, e(s))ds, (5.19)

where y satisfies (5.11).
From (5.16) and (5.13), we see that conditions (i) and (iii) follow immediately,

and by (5.12), the resolvent kernel R satisfies (ii). Hence, the function R satisfies
assumptions of Lemma 4.3. On virtue of Lemma 4.3, by (5.14), we get

lim
t→∞

t∫

0

R(t− s)h(s, e(s))ds = l for e ∈ Cl,ρ. (5.20)

By (5.11) and (5.13), we obtain

lim
t→∞

y(t) = [0, 0, . . . , 0]T . (5.21)
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From (5.20) and (5.21), we get

lim
t→∞

(Tei)(t) = l.

Moreover, using (5.19), by (5.13), (5.15), (5.17) and (5.18), we obtain

|(Tei)(t)| ≤ |yi(t)|+
t∫

0

|R(t− s)||h(s, ei(s))|ds ≤ my +mρ ≤ ρ

for i = 1, 2, . . . , N . This implies that ‖(Tei)(t)‖ ≤ ρ. Hence, (Te)(t) ∈ Cl,ρ for any
e ∈ Cl,ρ. It means that T (Cl,ρ) ⊂ Cl,ρ.

By (5.13), we have
R ∈ L1[0,∞). (5.22)

Since the convolution of a continuous function and an L1 function is continuous, the
function y defined by (5.11) is continuous for t ≥ 0. Function h is a continuous function,
then we get that T is a continuous mapping.

Since T (Cl,ρ) ⊂ Cl,ρ we have that T (Cl,ρ) is uniformly bounded.
Next, we prove that T (Cl,ρ) is equicontinuous on compact subsets of R+. To show it,

it is sufficient to show that T (Cl,ρ) is equicontinuous on interval [0, µ], for any µ > 0.
Since y is continuous for t ≥ 0, hence y is uniformly continuous on [0, µ].

Condition (5.22) implies that
∫ t

0 R(t− s)ds is continuous in t for all t ≥ 0. So more,
for t2 ≥ t1 the resolvent kernel has the following property

t1∫

0

[
R(t1 − s)−R(t2 − s)

]
ds→ 0 as |t1 − t2| → 0.

Let ε > 0 be arbitrary. Then there exists δ > 0 such that t1, t2 ∈ [0, µ] with |t1−t2| < δ

implies |y(t1)− y(t2)| < ε
3 and

∫ t1
0 |R(t1− s)−R(t2− s)|ds < ε

3mρ
. By (5.22), we have

∫ t2
t1
|R(t2 − s)|ds < ε

3mρ
. Hence, for e ∈ Cl,ρ and t1, t2 ∈ [0, µ], t1 ≤ t2, we get

‖(Te)(t1)− (Te)(t2)‖ ≤ ‖y(t1)− y(t2)‖

+
∥∥∥

t1∫

0

(
R(t1 − s)−R(t2 − s)

)
h(s, e(s))ds

∥∥∥

+
∥∥∥

t2∫

t1

R(t2 − s)h(s, e(s))ds
∥∥∥

≤ ε

3 +mρ
ε

3mρ
+mρ

ε

3mρ
= ε.

This shows that T (Cl,ρ) is equicontinuous on compact subsets of R+. Therefore,
by Lemma 4.4, the set T (Cl,ρ) is relatively compact.
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Hence, all assumptions of Lemma 4.1 are satisfied. It ensures that there exists
at least one solution of equation (5.10) in Cl,ρ.

Finally, we prove that all solutions of (5.10) in Cl,ρ are asymptotically stable. Let us
denote

φ(t) := sup{|h(t, e)− l|, e ∈ Cl,ρ}

for all t ∈ R+, where l is defined by (5.14). Obviously, lim
t→∞

φ(t) = 0. By virtue of
Lemma 4.3 (iii), we have

lim
t→∞

t∫

0

R(t, s)φ(s)ds = 0. (5.23)

Let ẽ, ē ∈ Cl,ρ be solutions of (5.10). It means ẽ(t) = (T ẽ)(t) and ē(t) = (T ē)(t). Thus
for all t ≥ 0, we have
∥∥∥ẽ(t)− ē(t)

∥∥∥

=
∥∥∥

t∫

0

R(t− s)
(
h(s, ẽ(s))− h(s, ē(s))

)
ds
∥∥∥

=
∥∥∥

t∫

0

R(t− s)
((
h(s, ẽ(s))− l

)
−
(
h(s, ē(s))− l

))
ds
∥∥∥

≤
∥∥∥

t∫

0

R(t− s)
(
h(s, ẽ(s))− l

)
ds
∥∥∥+

∥∥∥
t∫

0

R(t− s)
(
h(s, ē(s))− l

)
ds
∥∥∥

= sup
t≥0

{∥∥∥
t∫

0

R(t− s)
(
h(s, ẽ(s))− l

)
ds
∥∥∥
}

+ sup
t≥0

{∥∥∥
t∫

0

R(t− s)
(
h(s, ē(s))− l

)
ds
∥∥∥
}

≤ sup
t≥0

{ t∫

0

∥∥∥R(t− s)
∥∥∥
∥∥∥h(s, ẽ(s))− l

∥∥∥ds
}

+ sup
t≥0

{ t∫

0

∥∥∥R(t− s)
∥∥∥
∥∥∥h(s, ē(s))− l

∥∥∥ds
}

= 2
t∫

0

∥∥∥R(t− s)
∥∥∥φ(t)ds.

From the above and (5.23), we get |ẽ(t) − ē(t)| → 0 as t → ∞. It means that every
solution of (5.10) in Cl,ρ is asymptotically stable. This ended the proof.

Corollary 5.4. If there exists ρ > 0, such that

mρ < ρ, (5.24)

then the leader-following consensus of system (1.1) with the leader trajectory given
by (1.2) and initial conditions in [−ρ, ρ]N is achieved locally.
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Proof. Since lim
t→∞

y(t) = 0, then there exists M > 0, such that

sup
t≥M
{|y(t)|} ≤ ρ−mρ

2 . (5.25)

Condition (5.25) and (5.24) implies that condition (5.18) is satisfied for all t ≥ M .
Since that, all assumptions of Theorem 5.3 are satisfied for t ≥M and then the thesis
holds. It means that |ẽ(t)− ē(t)| → 0 as t→∞. By (5.4), we get |x̃(t)− x̄(t)| → 0 as
t → ∞. Taking into account equivalency of equation (5.10) and system (1.1)–(1.2),
it means that the leader-following consensus of system (1.1)–(1.2) is achieved.
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