PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The examples of the research of the nanostructured engineering materials and the concept of the new generation of highly innovative advanced pioneering nanostructured composite materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The first part of the paper presents the outcomes of a dozen of own researches in the field of nanotechnology, carried out over the last several years. The second part of the paper presents the new Author’s ideas on the predicted development of the new generation of highly innovative advanced pioneering nanostructured composite materials through the interaction of the extended nanoengineering components. Design/methodology/approach: Each of the selected topics was briefly described, with special emphasis laid on the issue of structural and phase transitions, which are generally taking place in the newly created original engineering materials and their related original technologies. Each of the descriptions was arbitrarily illustrated with a metallographic photographs made with electron microscopes, most often a transmission microscope, mainly a high-resolution or scanning microscope. The scientific objective of the planned research is to recognise and explain the relevant structural mechanisms, in each case, of synthesis and/or production and formulation of the structure and properties of a new generation of pioneering nanostructured composite materials through the interaction of the extended nanoengineering components and to characterise and model their structure and properties depending on the compositional, phase and chemical composition and the applied synthesis and/or production and/or processing processes. Findings: The research covered by the paper is pursued in the field of nanotechnology as the designing and manufacture of structures with new properties resulting from a nanosize. The planned research is of priority cognitive importance as theoretical considerations, indicate a great need to intensify scientific research to develop new groups of materials with completely unexpected foreseeable effects, resulting from the use of the extended nanoengineering components for manufacturing super advanced nanocomposite materials. Phenomena and processes at a nanoscale can be better recognised by producing a new generation of functional nanostructural materials. Practical implications: The measurable scientific effects concern the cognitive nature of the planned research and are associated with the determination of: the effect of compositional, phase and chemical composition, of the newly developed technologies of fabrication and surface micro-treatment inside pores, of internal precipitated phases or nanoinclusions or surface treatment of micropores in order to apply nanomaterials enabling the improvement of specific properties on the structure and properties of the newly created nanocomposite materials with the extended nanoengineering components ensuring the improvement of specific properties and the modelling of the structure and properties of the researched newly created nanocomposite materials using artificial intelligence methods. The research will comprise the fabrication of materials with new unforeseeable properties fulfilling multiple functions. Originality/value: Phenomena and processes at a nanoscale can be better recognised by producing a new generation of functional nanostructural materials (physicochemical basis of nanomaterials and nanostructures synthesis, with controlled architecture and properties, engineering of atomic and molecular bonds, models and theories explaining the properties of nanomaterials, surface phenomena, self-assembly phenomena in nanomaterials and nanostructures synthesis, magnetic phenomena in semiconducting and metallic nanostructures).
Rocznik
Strony
5--37
Opis fizyczny
Bibliogr. 115 poz.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] Commission Recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU), Official Journal of the European Union, 20.10.2011, http://eurlex.europa.eu/legal-content/en/txt/pdf/?uri=CELEX: 32011H0696&from=PL, Access in: 30.08.2016.
  • [2] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Open Access Library VI/1 (2016) 57-144.
  • [3] United States National Nanotechnology Initiative, Manufacturing at the Nanoscale, http://www.nano. gov/nanotech-101/what/manufacturing, Access in: 30.08.2016.
  • [4] N. Taniguchi, On the Basic Concept of 'Nano-technology', Proceedings of The International Conference on Production Engineering, Part II, Japan Society of Precision Engineering, Tokyo, 1974, 18-23.
  • [5] J. Gribbin, M. Gribbin, Richard Feynman: A Life in Science, Penguin Books, Dutton, 1997, 170.
  • [6] K.E. Drexler, Engines of Creation: The Coming Era of Nanotechnology with a foreword by Marvin Minsky, Anchor Pr., Doubleday, New York, 1986.
  • [7] K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley & Sons, Inc., New York, 1992.
  • [8] 21st Century Nanotechnology Research and Development Act (Public Law 108-153) started on 3rd December 2003.
  • [9] United States National Nanotechnology Initiative, What is Nanotechnology?, http://www.nano.gov/ nanotech-101/what/definition, Access in: 30.08.2016.
  • [10] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, 2004.
  • [11] R.W. Kelsall, I.W. Hamley, M. Geoghegan, Nanotechnologies, PWN, Warsaw, 2008 (in Polish).
  • [12] B. Bhushan (ed.), Springer Handbook of Nanotechnology, Second Edition, Springer, 2007.
  • [13] C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology, John Wiley & Sons, 2003.
  • [14] A.A. Tseng, Nanofabrication: Fundamentals and Applications, World Scientific Publishing Co Ltd, 2007.
  • [15] Y. Champion, H.-J. Fecht, Nano-Architectured and Nanostructured Materials Fabrication, Control and Properties, Wiley-VCH, Weinheim, 2004.
  • [16] M. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, Wiley-VCH, Weinheim, 2004.
  • [17] 2010 Nanotechnology Research Review, BCC Research Report NAN047B, January 2011.
  • [18] A. McWilliams, Nanotechnology: A Realistic Market Assessment, BCC Research Report NAN031D, July 2010.
  • [19] L.A. Dobrzański, M. Pawlyta, A. Hudecki, Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 550-565.
  • [20] M. Gagliardi, Nanofibers: Technologies and Developing Markets, BCC Research Report NAN043A, June 2007.
  • [21] M. Gagliardi, Nanofibers: Technologies and Developing Markets, BCC Research Report NAN043B, June 2010.
  • [22] A. McWilliams, Nanocomposites, Nanoparticles, Nanoclays, and Nanotubes, BCC Research Report NAN021D, January 2010.
  • [23] The Project „BIOLASIN – Investigations of structure and properties of newly created porous biomimetic materials fabricated by selective laser sintering” funded by the DEC-2013/08/M/ST8/00818 of the Polish National Science Centre in the framework of the “Harmony 4” competitions, headed by Prof. Leszek A. Dobrzański.
  • [24] The Project „NANOCOPOR – Determining the importance of the effect of the one-dimensional nanostructural materials on the structure and properties of newly developed functional nanocomposite and nanoporous materials”, funded by the DEC-2012/07/B/ ST8/04070 of the Polish National Science Centre in the framework of the “OPUS” competitions, headed by Prof. Leszek A. Dobrzański.
  • [25] The Project „MATWITRIS – Structural foundation of counteracting cracking by increase of the cold plastic strain energy margin of the newly developed highmanganese steels of TRIP, TWIP and TRIPLEX types”, funded by the DEC-2012/05/B/ST8/00149 of the Polish National Science Centre in the framework of the “OPUS” competitions, headed by Prof. Leszek A. Dobrzański.
  • [26] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [27] L.A. Dobrzański, Korszerű mérnöki anyagok kutatá- sának nanotechnológiai aspektusai, Miskolci Egyetem, Multidiszciplináris tudományok 6/1 (2016) 21-44.
  • [28] K. Lukaszkowicz, Forming the structure and properties of hybrid coatings on reversible rotating extrusion dies, Open Access Library 10/16 (2012) 1-140 (in Polish).
  • [29] E. Orowan, Zur Kristallplastizität. III. Über den Mechanismus des Gleitvorganges, Zeitschrift für Physik 89/9 (1934) 634-659, doi: 10.1007/BF01341480.
  • [30] A.D. Dobrzańska-Danikiewicz, D. Cichocki, D. Łukowiec, Nanocomposites Consisting of Carbon Nanotubes and Nanoparticles of Noble Metals, Materials Science Forum 879 (2017) 442-447.
  • [31] A. Dobrzańska-Danikiewicz, D. Łukowiec, J. Kubacki, Investigations of Electron Properties of Carbon Nanotubes Decorated with Platinum Nanoparticles with Their Varying Fraction, Journal of Nanomaterials (2016) Article ID 4942398, doi: 10.1155/2016/ 4942398.
  • [32] A.D. Dobrzańska-Danikiewicz, W. Wolany, D. Łukowiec, D. Cichocki, M. Burda, Various forms of platinum deposited on carbon nanotubes, Archives of Materials Science and Engineering 75/2 (2015) 53-62.
  • [33] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Comparison of the MWCNTs-Rh and MWCNTs-Re Carbon-Metal Nanocomposites Obtained in High-Temperature, Archives of Metallurgy and Materials 60/3 (2015) 2053-2060 doi: 10.1515/amm-2015-0348.
  • [34] A.D. Dobrzańska-Danikiewicz, W. Wolany, D. Cichocki, D. Łukowiec, Microscopic and Spectroscopic Research of the MWCNTs-Re Nanocomposites Archives of Metallurgy and Materials 60/3 (2015) 2047- 2052, doi: 10.1515/amm-2015-0347.
  • [35] A.D. Dobrzańska-Danikiewicz, W. Wolany, Nanocomposites consisting of SWCNTs/DWCNTs decorated with Re nanoparticles, Archives of Materials Science and Engineering 74/2 (2015) 53-57.
  • [36] A.D. Dobrzańska-Danikiewicz, D. Cichocki, D. Łukowiec, Obtaining and description of the MWCNTs-Pd nanocomposite, Archives of Materials Science and Engineering 74/1 (2015) 15-22.
  • [37] A.D. Dobrzańska-Danikiewicz, D. Cichocki, D. Łukowiec, The MWCNTs-Rh nanocomposite obtained by the new high-temperature method, Archives of Metallurgy and Materials 60/2 (2015) 1057-1063, doi: 10.1515/amm-2015-0259.
  • [38] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, W. Wolany, Comparative analysis of the structure of nanocomposites consisting of MWCNTs and Pt or Re nanoparticles, in: W.I. Milne, M. Cole (eds.), Carbon Nanotechnology, One Central Press, Manchester, 2015, 31-53.
  • [39] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Nanocomposites composed of carbon nanotubes coated with nanocrystals of noble metals, Open Access Library V/2 (2015) 1-131 (in Polish).
  • [40] L.A. Dobrzański, NANOPHEN – Project proposal “The systematisation of nanometric objects, structural phenomena and mechanisms allowing to improve the properties of a new pioneering nanostructured composite materials with the extended nanoengineering components”, Project send to National Centre of Science, Cracow, December 2016.
  • [41] A.D. Dobrzańska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, Open Access Library 8/26 (2013) 1-823 (in Polish).
  • [42] A.D. Dobrzańska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, Open Access Library 1/7 (2012) 1-289 (in Polish).
  • [43] A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering area, Archives of Materials Science Engineering 44/2 (2010) 69-86.
  • [44] E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes, Composites Science and Technology 70/16 (2010) 2228-2236, 10.1016/j.compscitech.2010.09.003.
  • [45] C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Materials Science and Engineering A 444/1-2 (2007) 138-145, doi: 10.1016/ j.msea.2006.08.057.
  • [46] H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Investigation of carbon nanotube reinforced aluminum matrix composite materials, Composites Science and Technology 70/3 (2010) 546-550, doi: 10.1016/ j.compscitech.2009.11.025.
  • [47] T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, Processing of Carbon Nanotube Reinforced Aluminum Composite, Journal of Materials Research 13/9 (1998) 2445-2449, doi: 10.1557/jmr.1998.0340.
  • [48] G. Zhao, F. Deng, Electroless Plating of Ni-P-CNTs Composite Coating, Key Engineering Materials 280- 283 (2005) 1445-1448, doi: 10.4028/www.scientific. net/KEM.280-283.1445.
  • [49] T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki, Carbon Nanotube/Aluminium Composites with Uniform Dispersion, Materials Transactions 45/2 (2004) 602-604.
  • [50] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, Nanotechnology 17/1 (2006) 7-12, doi: 10.1088/0957- 4484/17/1/002.
  • [51] Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimotob, A. Koidec, Multi-walled carbon nanotube-reinforced magnesium alloy composites, Scripta Materialia 58 (2008) 267-270, doi: 10.1016/j.scriptamat.2007.10.014.
  • [52] Q. Li, A. Viereckl, C.A. Rottmair, R.F. Singer, Improved processing of carbon nanotube/magnesium alloy composites, Composites Science and Technology 69/7-8 (2009) 1193-1199, doi: 10.1016/ j.compscitech.2009.02.020.
  • [53] H. Fukuda, K. Kondoh, J. Umeda, B. Fugetsu, Interfacial analysis between Mg matrix and carbon nanotubes in Mg–6 wt.% Al alloy matrix composites reinforced with carbon nanotubes, Composites Science and Technology 71/5 (2011) 705-709, doi: 10.1016/j.compscitech.2011.01.015.
  • [54] Y. Park, K. Cho, I. Park, Y. Park, Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes, Procedia Engineering 10 (2011) 1446-1450, doi: 10.1016/ j.proeng.2011.04.240.
  • [55] Q. Pham, Y.G. Jeong, S.H. Hong, H.S. Kim, Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposites, Key Engineering Materials 326-328 (2006) 325-328, doi: 10.4028/www.scientific.net/KEM.326-328.325.
  • [56] S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki, T. Tsukada, Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scripta Materialia 63/4 (2010) 375-378, doi: 10.1016/j.scriptamat.2010.04.024.
  • [57] J.P. Tu, Y.Z. Yang, L.Y. Wang, X.C. Ma, X.B. Zhang, Tribological properties of carbon-nanotube-reinforced copper composites, Tribology Letters 10/4 (2001) 225-228, doi:10.1023/A:1016662114589.
  • [58] K.T. Kim, S.I. Cha, S.H. Hong, S.H. Hong, Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites, Materials Science and Engineering A 430/1-2 (2006) 27-33, doi: 10.1016/j.msea.2006.04.085
  • [59] S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Extraordinary Strengthening Effect of Carbon Nanotubes in Metal-Matrix Nanocomposites Processed by Molecular-Level Mixing, Advanced Materials 17/11 (2005) 1377-1381, doi: 10.1002/adma. 200401933.
  • [60] L.A. Dobrzański, M. Macek, B. Tomiczek, Effect of carbon nanotubes content on morphology and properties of AlMg1SiCu matrix composite powders, Archives of Materials Science and Engineering 69/1 (2014) 12-18.
  • [61] L.A. Dobrzański, B. Tomiczek, M. Adamiak, Manufacturing of EN AW6061 matrix composites reinforced by halloysite nanotubes, Journal of Achievements in Materials and Manufacturing Engineering 49/1 (2011) 82-89.
  • [62] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, M. Król, Aluminium AlMg1SiCu matrix composite materials reinforced with halloysite particles, Archives of Metallurgy and Materials 59/1 (2014) 335-338, doi: 10.2478/amm-2014-0055.
  • [63] B. Tomiczek, M. Kujawa, G. Matula, M. Kremzer, T. Tański, L.A. Dobrzański, Aluminium AlSi12 alloy matrix composites reinforced by mullite porous preforms, Materialwissenschaft und Werkstofftechnik 46/4-5 (2015) 368-376, doi: 10.1002/mawe. 201500411.
  • [64] K.T. Kim, J. Eckert, G. Liu, J.M. Park, B.K. Lim, S.H. Hong, Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing, Scripta Materialia 64 (2011) 181-184, doi: 10.1016/j.scripta mat.2010.09.039.
  • [65] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites – a review, International Materials Reviews 55/1 (2010) 41-64, doi: 10.1179/095066009X12572530170543.
  • [66] K.S.M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth, H.-J. Fecht, Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Composites Science and Technology 70/16 (2010) 2253-2257, doi: 10.1016/j.compscitech. 2010.07.012.
  • [67] J.S. Choi, S.W. Lee, L. Jeong, S.-H. Bae, B.C. Min, J.H. Youk, W.H. Park, Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3- hydroxybutyrate-co-3-hydroxyvalerate), International Journal of Biological Macromolecules 34/4 (2004) 249-256, doi: 10.1016/j.ijbiomac.2004.06.001.
  • [68] G.L. Bowlin, A new spin on scaffolds, Materials Today 7/5 (2004) 64.
  • [69] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing, Biodegradable electrospun fibers for drug delivery, Journal of Controlled Release 92/3 (2003) 227-231, doi: 10.1016/S0168-3659(03)00372-9.
  • [70] K. Ohkawa, H. Kim, K. Lee, Biodegradation of Electrospun Poly(ɛ-caprolactone) Non-woven Fabrics by Pure-Cultured Soil Filamentous Fungi, Journal of Polymers and the Environment 12/4 (2004) 211-218, doi: 10.1007/s10924-004-8148-y.
  • [71] A.L. Andrady, Science and technology of polymer nanofibers, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
  • [72] P.J. Brown, K. Stevens (ed.), Nanofibers and nanotechnology in textiles, CRC Press, Boca Raton, Boston, New York, Washington, Cambridge, 2007.
  • [73] J.-H. He, Y. Liu, L.-F. Mo, Y.-Q. Wan, L. Xu, Electrospun Nanofibres and Their Applications, iSmithers, Shawbury, Shrewsbury, Shropshire, 2008.
  • [74] Z.M. Hung, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their application in nanocomposites, Composite Science and Technology 63/15 (2003) 2223-2253, doi: 10.1016/S0266-3538(03)00178-7.
  • [75] J.M. Deitzel, J.D. Klein Meyer, J.K. Hirvonen, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nano fibers and textiles, Journal of Polymer Science 42/1 (2001) 261-272, doi: 10.1016/S0032-3861(00)00250-0.
  • [76] L.A. Dobrzański, M. Górniak, Ł. Reimann, M. Staszuk, Characterization of aluminosilicate nanoparticles as a reinforcement in composite materials based on polymeric matrix, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 239-244.
  • [77] L.A. Dobrzański, A. Mucha, M. Macek, The influence of carbon nanotubes on the mechanical properties of nanocomposites, Archives of Materials Science and Engineering 68/2 (2014) 75-80.
  • [78] G.A. Gelves, B. Lin, J.A. Haber, U. Sundararaj, Enhancing Dispersion of Copper Nanowires in MeltMixed Polystyrene Composites, Journal of Polymer Science: Part B: Polymer Physics 46/19 (2008) 2064- 2078, doi: 10.1002/polb.21541.
  • [79] G.A. Gelves, B. Lin, U. Sundararaj, J.A. Haber, Low electrical percolation threshold of silver and copper nanowires in polystyrene composites, Advanced Functional Materials 16/18 (2006) 2423-2430, doi: 10.1002/adfm.200600336.
  • [80] Z. Huo, C.-k. Tsung, W. Huang, X. Zhang, P. Yang, Sub-two nanometer single crystal Au nanowires, Nano Letters 8/7 (2008) 2041-2044, doi: 10.1021/ nl8013549.
  • [81] X. Lu, M.S. Yavuz, H.-Y. Tuan, B.A. Korgel, Y.J. Xia, Ultrathin Gold Nanowires Can Be Obtained by Reducing Polymeric Strands of Oleylamine−AuCl Complexes Formed via Aurophilic Interaction, Journal of the American Chemical Society 130/28 (2008) 8900-8901, doi: 10.1021/ja803343m.
  • [82] C. Wang, Y. Hu, C.M. Lieber, S. Sun, Ultrathin Au Nanowires and Their Transport Properties, Journal of the American Chemical Society 130/28 (2008) 8902- 8903, doi: 10.1021/ja803408f.
  • [83] F. Kim, K. Sohn, J. Wu, J. Huang, Chemical Synthesis of Gold Nanowires in Acidic Solutions, Journal of the American Chemical Society 130/44 (2008) 14442- 14443, doi: 10.1021/ja806759v.
  • [84] N.R. Jana, L. Gearheart, C. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chemical Communications 7 (2001) 617-618, doi: 10.1039/B100521I.
  • [85] L.A. Dobrzański, I. Czaja, Effect of nanowires and nanoparticles of copper on the structure and properties of the nanocomposite polymeric materials, Archives of Materials Science and Engineering 75/1 (2015) 18- 29.
  • [86] Y. Nakayama, E. Takeda, T. Shigeishi, H. Tomiyama, T. Kajiwara, Melt-Mixing by Novel Pitched-Tip Kneading Disks in a Co-Rotating Twin-Screw Extruder, Chemical Engineering Science 66/1 (2011) 103- 110, doi: 10.1016/j.ces.2010.10.022.
  • [87] M.H. Al-Saleh, U. Sundararaj, Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions, Polymers for Advanced Technologies 22/2 (2011) 246-253, doi: 10.1002/pat.1526.
  • [88] B. Ma, C.H. Woo, Y. Miyamoto, J.M.J. Fréchet, Solution Processing of a Small Molecule, Subnaphthalocyanine, for Efficient Organic Photovoltaic Cells, Chemistry of Materials 21/8 (2009), 1413-1417, doi: 10.1021/cm900005g.
  • [89] C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr., S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L. St. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chemical Physics Letters 364/3-4 (2002) 303-308, doi: 10.1016/S0009-2614(02)01326-x.
  • [90] Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline Silver Nanowires by Soft Solution Processing, Nano Letters 2/2 (2002) 165-168, doi: 10.1021/nl010093y.
  • [91] C. Zeng, L.J. Lee, Poly(methyl methacrylate) and Polystyrene/Clay Nanocomposites Prepared by in-Situ Polymerization, Macromolecules 34/12 (2001) 4098- 4103, doi: 10.1021/ma010061x.
  • [92] J.-H. Chen, C.-A. Daia, H.-J. Chen, P.-C. Chien, W.- Y. Chiu, Synthesis of nano-sized TiO2/poly(AA-coMMA) composites by heterocoagulation and blending with PET, Journal of Colloid and Interface Science 308/1 (2007) 81-92, doi: 10.1016/j.jcis.2006.12.066.
  • [93] L.A. Dobrzański, A. Wierzbicka, A. Drygała, K. Lukaszkowicz, Influence of carbon nanotubes on properties of dye-sensitised solar cells, Archives of Materials Science and Engineering 74/1 (2015) 32-44.
  • [94] L.A. Dobrzański, M. Szindler, M. Prokopiuk vel Prokopowicz, A. Drygała, K. Lukaszkowicz, T. Jung, M.M. Szindler, Transparent platinum counter electrode for dye-sensitized solar cells, Journal of Achievements in Materials and Manufacturing Engineering 68/1 (2015) 5-10.
  • [95] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Formation of structure and properties of engineering materials, Silesian University of Technology Publishing, Gliwice, 2013, 1-492 (in Polish).
  • [96] L.A. Dobrzański, D. Pakuła, M. Staszuk, A.D. Dobrzańska-Danikiewicz, Structure and properties of composite coatings on sintered carbide and nitride and sialon ceramics, Open Access Library V/1 (2015) 1-173 (in Polish).
  • [97] D. Pakuła, L.A. Dobrzański, A. Križ, M. Staszuk, Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics, Archives of Materials Science and Engineering 46/1 (2010) 53-60.
  • [98] L.A. Dobrzański, D. Pakuła, A. Křiž, M. Soković, J. Kopač, Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics, Journal of Materials Processing Technology 175 (2006) 179-185.
  • [99] L.A. Dobrzański, D. Pakuła, M. Staszuk, Chemical Vapor Deposition in Manufacturing, in: A.Y.C. Nee (ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2755- 2803.
  • [100] L.A. Dobrzański, K. Gołombek, K. Lukaszkowicz, Physical Vapor Deposition in Manufacturing, in: A.Y.C. Nee (ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2719-2754.
  • [101] K. Lukaszkowicz, L.A. Dobrzański, J. Sondor, Microstructure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology, in: B.S.R. Reddy (ed.), Advances in Diverse Industrial Applications of Nanocomposites, InTech, Rijeka, Croatia, 2011, 1-16.
  • [102] L.A. Dobrzański, Design and manufacturing of functional graded tool materials – dependence of properties on technology and thickness of surface layers with gradient of chemical and phase composition manufactured on tools for various applications, in: Design and manufacturing of functional graded materials, Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PAN), Kraków, 2007, 130-150 (in Polish).
  • [103] L.A. Dobrzański, The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry, Archives of Materials Science and Engineering 80/2 (2016) 64-85.
  • [104] K. Gołombek, Structure and properties of injection moulding tool materials with nanocrystalline coatings, Open Access Library 1/19 (2013) 1-136 (in Polish).
  • [105] L.A. Dobrzański, K. Lukaszkowicz, A. Zarychta, L. Cunha, Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate, Journal of Materials Processing Technology 164-165 (2005) 816-821.
  • [106] K. Lukaszkowicz, L.A. Dobrzański, A. Zarychta, Structure, chemical and phase compositions of coatings deposited with the reactive magnetron sputtering onto the brass substrate, Journal of Materials Processing Technology 157-158 (2004) 380-387.
  • [107] T. Tański, L.A. Dobrzański, S. Rusz, W. Matysiak, M. Kraus, Characteristic features of fine-grained coatings deposited on magnesium alloys, Archives of Materials Science and Engineering 66/1 (2014) 13-20.
  • [108] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, M. Król, S. Malara, J. Domagała-Dubiel, Mg-Al-Zn alloys structure and properties, Open Access Library 5/11 (2012) 1-319 (in Polish).
  • [109] L.A. Dobrzański, M. Szindler, A. Drygała, M.M. Szindler, Silicon solar cells with Al2O3 antireflection coating, Central European Journal of Physics 12/9 (2014) 666-670.
  • [110] L.A. Dobrzański, M. Szindler, Sol gel TiO2 antireflection coatings for silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 52/1 (2012) 7-14.
  • [111] L.A. Dobrzański, M. Szindler, Sol-gel and ALD antireflection coatings or silicon solar cells, Elektronika – konstrukcje, technologie, zastosowania 53/8 (2012) 125-127.
  • [112] T. Tański, E. Jonda, K. Labisz, L.A. Dobrzański, Toughness of Laser-Treated Surface Layers Obtained by Alloying and Feeding of Ceramic Powders, in: S. Zhang (ed.), Thin Films and Coatings. Toughening and Toughness Characterization, CRC Press, Boca Raton, 2015, 225-314.
  • [113] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T. Tański, E. Jonda, A. Drygała, M. Bonek, Laser Surface Treatment in Manufacturing, in: A.Y.C. Nee (ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2677- 2717.
  • [114] T. Tański, W. Pakieła, M. Wiśniowski, L.A. Dobrzański, Shaping of Surface Layer Structure and Mechanical Properties After Laser Treatment of Aluminium Alloys, in: A. Öchsner, H. Altenbach (eds.), Mechanical and Materials Engineering of Modern Structure and Component Design, Springer International Publishing, Cham, 2015, 85-96.
  • [115] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam, 2015, 3-32.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29415894-2146-4e47-aa61-42d7e3ce0ae7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.