PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Tidal characteristics in the Gulf of Khambhat, northern Arabian Sea – based on observation and global tidal model data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tidal characteristics of the Gulf of Khambhat are described based on measured and modelled sea-level data. Data were recorded at three locations inside and two locations outside the Gulf with record lengths of 6-12 months to study the tidal propagation. A northward increase in tidal amplitude is noticed from Daman (eastern side) and Diu (western side) and attains maxima at Bhavnagar. A similar trend is followed by the amplitude of the major tidal constituents, although there are discrepancies for that of the minor constituents. The non-tidal factor which influences the sea-level is the local wind, especially the alongshore component of wind. A positive correlation is obtained between the sea-level and the meridional component of wind at each location. Harmonic analysis of sea-level data shows that M2 is the major tidal constituent which propagates in a non-linear fashion inside the Gulf. Tides from two global tide models (MIKE21 and FES2014) have been compared with the measured data, which could be used for further prediction of the tides and sediment transport in the Gulf. The tide elevation derived from the MIKE21 model has further been used for the harmonic analysis of tide. The tides predicted using one-month data are up to 10% smaller than those predicted using the one-year data. The global tide model FES2014 data performs well with measured data for offshore locations, whereas it fails to predict the same for the inner Gulf locations. The study manifests the fact that to understand the dynamics of complex tidal areas, regional models should better be used than global tidal models.
Czasopismo
Rocznik
Strony
443--459
Opis fizyczny
Bibliogr. 39 poz., mapa, tab., wykr.
Twórcy
autor
  • Ocean Engineering, CSIR-National Institute of Oceanography (Council of Scientific and Industrial Research), Dona Paula, Goa-403 004, India
  • Research Scholar, Bharathidasan University, Tiruchirappalli,Tamil Nadu, India
  • Ocean Engineering, CSIR-National Institute of Oceanography (Council of Scientific and Industrial Research), Dona Paula, Goa-403 004, India
  • Coastal and Environmental Engineering Division, National Institute of Ocean Technology, Pallikaranai, Chennai, India
Bibliografia
  • [1] Aubrey, D. G., Speer, P. E., 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems part I: observations. Estuar. Coast. Shelf Sci. 21, 185-205, https://doi.org/10.1016/0272-7714(85)90096-4.
  • [2] Amiruddin, A. M., Haigh, I. D., Tsimplis, M. N., Calafat, F. M., Dangendorf, S., 2015. The seasonal cycle and variability of sea level in the South China Sea. J. Geophys. Res.-Oceans 120, 5490-5513, https://doi.org/10.1002/2015JC010923.
  • [3] Bell, C., Vassie, J. M., Woodworth, P. L., 2000. POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). In: Permanent Service for Mean Sea Level, CCMS Proudman Oceanographic Laboratory, Bidston Observatory. Birkenhead, Merseyside, U.K., https://www.psmsl.org/train_and_info/software/task2k.php (accessed on 03/10/2018).
  • [4] Carl, T. F., Aubrey, D. G., 1994. Tidal propagation in strongly convergent channels. J. Geophys. Res.-Oceans 99 (C2), 3321-3336, https://doi.org/10.1029/93JC03219.
  • [5] Carrere, L., Lyard, F., Cancet, M., Guillot, A., 2015. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In: In Proceedings of the EGU General Assembly 2015. Vienna, Austria, 12-17 April 2015.
  • [6] Cartwright, D. E., Taylor, R. J., 1971. New computations of the tide-generating potential. Geophys. J. Int. 23, 45-73, https://doi.org/10.1111/j.1365-246X.1971.tb01803.x.
  • [7] Deng, X., Featherstone, W. E., 2006. A coastal retracking system for satellite radar altimeter waveforms: Application to ERS-2 around Australia. J. Geophys. Res.-Oceans 111, https://doi.org/10.1029/2005JC003039.
  • [8] Devlin, A. T., Jay, D. A., Talke, S. A., Zaron, E., 2014. Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution? Ocean Dynam. 64, 1093-1120, https://doi.org/10.1007/s10236-014-0741-6.
  • [9] Devlin, A. T., Jay, D. A., Zaron, E. D., Talke, S. A., Pan, J., Lin, H., 2017a. Tidal variability related to sea level variability in the Pacific Ocean. J. Geophys. Res.-Oceans 122, 8445-8463, https://doi.org/10.1002/2017JC013165.
  • [10] Devlin, A. T., Jay, D. A., Talke, S. A., Zaron, E. D., Pan, J., Lin, H., 2017b. Coupling of sea level and tidal range changes, with implications for future water levels. Sci. Rep. 7, 17021, https://doi.org/10.1038/s41598-017-17056-z.
  • [11] Devlin, A. T., Pan, J., Lin, H., 2019. Tidal variability in the Hong Kong region. Ocean Sci. 15, 853-864, https://doi.org/10.5194/os-15-853-2019.
  • [12] DHI, 2017. MIKE 21 Toolbox Global Tide Model — Tide Prediction, 116, https://www.dhigroup.com/download/mike-by-dhi-tools/coastandseatools/global-tide-model (accessed on 26.02.2019).
  • [13] Dronkers, J. J., 1964. Tidal Computations in Rivers and Coastal Waters. North-Holland Publ. Comp., Amsterdam, 516 pp., https://doi.org/10.1126/science.146.3642.390.
  • [14] Garel, E., Cai, H., 2018. Effects of Tidal-Forcing Variations on Tidal Properties Along a Narrow Convergent Estuary. Estuar. Coasts 41, 1924-1942, https://doi.org/10.1007/s12237-018-0410-y.
  • [15] Godin, G., 1993. On tidal resonance. Cont. Shelf Res. 13 (1), 89-107, https://doi.org/10.1016/0278-4343(93)90037-X.
  • [16] Jay, D. A., Leffler, K., Diefenderfer, H. L., Borde, A. B., 2015. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-Channel Water Level Variations. Pacific Ocean to Bonneville Dam. Estuar. Coasts 38, 415-433, https://doi.org/10.1007/s12237-014-9819-0.
  • [17] Joseph, A., Vijaykumar, K., Mehra, P., Unnikrishnan, A. S., Sundar, D., Prabhudesai, R. G., 2009. Observed tides at Mumbai High offshore region near the continental shelf break in the eastern Arabian Sea. Current Sci. 96 (9), 1233-1235.
  • [18] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Roy, J., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437-471, https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2.
  • [19] Kumar, V. S., Kumar, K. A., 2010. Waves and currents in tide dominated location off Dahej. Gulf of Khambhat. Mar. Geodesy 33, 218-231, https://doi.org/10.1080/01490419.2010.492299.
  • [20] Kumar, V. S., Dora, G. U., Philip, S., Pednekar, P., Singh, J., 2011. Variations in tidal constituents along the nearshore waters of Karnataka, west coast of India. J. Coast. Res. 27 (5), 824-829, https://doi.org/10.2112/JCOASTRES-D-09-00114.1.
  • [21] Kumar, V. S., Pathak, K. C., Pednekar, P., Raju, N. S. N., Gowthaman, R., 2006. Coastal processes along the Indian coastline. Current Sci. 91 (4), 530-536.
  • [22] Lanzoni, S., Seminara, G., 1998. On tide propagation in convergent estuaries. J. Geophys. Res.-Oceans 103 (C13), 30793-30812, https://doi.org/10.1029/1998JC900015.
  • [23] Lee, S. B., Li, M., Zhang, F., 2016. The effect of sea level rise on Tidal Dynamics in Chesapeake and Delaware Bays. In: Ocean Sciences Meeting 2016. EC31A-06, 1-26 February, New Orleans, Louisiana, USA., https://agu.confex.com/agu/os16/preliminaryview.cgi/Paper93354.html.
  • [24] Liu, J. T., Aubrey, D. G., 1993. Tidal residual currents and sediment transport through multiple tidal inlets. Coast. Estuar. Stud. 44, 113-157, https://doi.org/10.1029/CE044p0113.
  • [25] Mitra, A., Kumar, V. S., Naidu, V. S., 2020. Circulation in the Gulf of Khambhat - A Lagrangian Perspective. J. Mar. Sci. Eng, 8, 25 pp., https://doi.org/10.3390/jmse8010025.
  • [26] Nayak, R. K., Shetye, S. R., 2003. Tides in the Gulf of Khambhat, west coast of India. Estuar. Coast. Shelf Sci. 57, 249-254, https://doi.org/10.1016/S0272-7714(02)00349-9.
  • [27] Nayak, R. K., Salim, M., Mitra, D., Sridhar, P. N., Mohanty, P. C., Dadhwal, V. K., 2015. Tidal and Residual Circulation in the Gulf of Khambhat and its Surrounding on the West Coast of India. J. Indian Soc. Remote Sens. 43, 151-162, https://doi.org/10.1007/s12524-014-0387-3.
  • [28] Pugh, D. T., 1987. Tides, Surges and Mean Sea Level. John Wiley and Sons, Chichester, U.K., 472 pp., http://eprints.soton.ac.uk/id/eprint/19157.
  • [29] Ray, R. D., Egbert, G. D., Erofeeva, S. Y., 2011. Tide Predictions in Shelf and Coastal Waters: Status and Prospects. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (Eds.), Coastal Altimetry. Springer, Berlin, Heidelberg, 191-216.
  • [30] Seifi, F., Deng, X., Andersen, O. B., 2019. Assessment of the Accuracy of Recent Empirical and Assimilated Tidal Models for the Great Barrier Reef, Australia. Using Satellite and Coastal Data. Remote Sens, 11, 1211 pp., https://doi.org/10.3390/rs11101211.
  • [31] Shankar, D., 2000. Seasonal cycle of sea level and currents along the coast of India. Current Sci 78 (3), 279-288.
  • [32] Shetye, S. R., Gouveia, A. D., 1998. Coastal circulation in the North Indian Ocean — Coastal Segment (14, S-W). The Sea, 11. John Wiley and Sons, Inc., 523-772.
  • [33] Shetye, S. R., 1999. Tides in the Gulf of Kutch. Cont. Shelf Res. 19, 1771-1782, http://dx.doi.org/10.1016/S0278-4343(99)00038-2.
  • [34] Simkooei, A. R. A., Zaminpardaz, S., Sharifi, M. A., 2014. Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series. J. Geodesy 88, 975-988, https://doi.org/10.1007/s00190-014-0737-5.
  • [35] Sundar, D., Shankar, D., Shetye, S. R., 2005. Sea level during storm surges as seen in tide-gauge records along the east coast of India. Current Sci. 22, 1-10, https://www.jstor.org/stable/24104426.
  • [36] Unnikrishnan, A. S., Shetye, S. R., Michael, G. S., 1999. Proc. Indian Acad. Sci. (Earth Planet Sci.) 108, 155-177, https://doi.org/10.1007/BF02842329.
  • [37] Wijeratne, E. M. S., Woodworth, P. L., Stepanov, V. N., 2008. The Seasonal Cycle of Sea Level in Sri Lanka and Southern India. Western Indian Ocean. J. Mar. Sci. 7 (1), 29-43, https://doi.org/10.4314/wiojms.v7i1.48252.
  • [38] Woodworth, P. L., 2017. Differences between Mean Tide Level and Mean Sea Level. J. Geodesy 91, 69-90, https://doi.org/10.1007/s00190-016-0938-1.
  • [39] Wouters, B., Riva, R. E. M., Lavallée, D. A., Bamber, J. L., 2011. Seasonal variations in sea level induced by continental water mass: First results from GRACE. Geophys. Res. Lett. 38, L03303, https://doi.org/10.1029/2010GL046128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-293b73ce-aa5f-4606-af21-f875c413cfce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.