PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on the mechanical properties of textile reinforced mortar (TRM) composites with different yarn shapes subjected to uniaxial tension

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textile reinforced mortar (TRM) has been applied to retrofit or reinforce the masonry and reinforced concrete (RC) buildings due to the promising tensile properties. The presented work mainly investigated the tensile behaviors of TRM composites with different shapes of carbon multifilament yarns and types of matrices. The flatter shape of yarn has a larger bonding area for the same cross section area of the yarns compared with the elliptical ones. The specimens reinforced with the elliptical and flatter sectional shape of yarns were compared in terms of failure mode, tensile strength, tensile stress–strain response and strain energy. The results showed that the tensile strength can be enhanced by 11% ~ 67%. The utilization of the textiles in the matrix was significantly improved. It demonstrated the fact that the stress difference between the core and outer of yarns was significantly reduced. The flatter shape of yarn effectively contributed to the enhancement of bonding property. The slippage between yarns and matrix was prevented owning to the larger bonding area. Finally, based on the shape coefficient related to the section shape of the yarn, a modified index model was suggested to predict the tensile strength.
Rocznik
Strony
art. no. e185, 2022
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • College of Architecture & Civil Engineering, Shangqiu Normal University, Pingyuan Road, Shangqiu 476000, Henan Province, China
autor
  • College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001, China
autor
  • School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi Province, China
autor
  • School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi Province, China
Bibliografia
  • [1] Weiland S, Schladitz F, Schütze E, Timmers R, Curbach M. Ris-sinstandsetzung eines Zuckersilos: TUDALIT®(Textilbeton) zur Instandsetzung. Bautechnik. 2013;90(8):498–504. https://doi.org/10.1002/bate.201300046.
  • [2] A. Nanni, A new tool for concrete and masonry repair. Concr Int 34(4) (2012), 1–7. https://www.researchgate.net/publication/284669113.
  • [3] Kulas C, Goralski C. Die weltweit längste textilbetonbrücke: technische details und praxiserfahrungen. Beton-und Stahlbetonbau. 2014;109(11):812–7. https://doi.org/10.1002/best.201400066.
  • [4] Kouris LAS, Triantafillou TC. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr Build Mater. 2018;188:1221–33. https://doi.org/10.1016/j.conbuildmat.2018.08.039.
  • [5] Carozzi FG, Bellini A, D’Antino T, et al. Experimental investigation of tensile and bond properties of carbon-FRCM composites for strengthening masonry elements. Compos Part B. 2017;128:100–19. https://doi.org/10.1016/j.compositesb.2017.06.018.
  • [6] Leone M, Aiello MA, Balsamo A, et al. Glass fabric reinforced cementitious matrix: tensile properties and bond performance on masonry substrate. Compos Part B. 2017;127:196–214. https://doi.org/10.1016/j.compositesb.2017.06.028.
  • [7] Caggegi C, Carozzi FG, De Santis S, et al. Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Compos Part B. 2017;127:175–95. https:// doi. org/ 10. 1016/j.compositesb.2017.05.048.
  • [8] El Kadi M, Tysmans T, Verbruggen S, et al. Experimental study and benchmarking of 3D textile reinforced cement composites. Cement Concrete Comp. 2019;104: 103352. https://doi.org/10.1016/j.cemconcomp.2019.103352.
  • [9] Yin S, Jing L, Yin M, et al. Mechanical properties of textile reinforced concrete under chloride wet-dry and freeze-thaw cycle environments. Cement Concrete Comp. 2019;96:118–27. https://doi.org/10.1016/j.cemconcomp.2018.11.020.
  • [10] Deng M, Dong Z, Zhang C. Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) addedwith short polyvinyl alcohol (PVA) fibers. Constr Build Mater. 2020;235: 117801. https://doi.org/10.1016/j.conbuildmat.2019.117801.
  • [11] Barhum R, Mechtcherine V. Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading. Eng Fract Mech. 2012;92:56–71. https://doi.org/10.1016/j.engfracmech.2012.06.001.
  • [12] Donnini J, Corinaldesi V, Nanni A. Mechanical properties of FRCM using carbon fabrics with different coating treatments. Compos Part B. 2016;88:220–8. https://doi.org/10.1016/j.compositesb.2015.11.012.
  • [13] Mobasher B. Mechanics of fiber and textile reinforced cement composites. Boca Raton: CRC Press; 2011. p. 33–4.
  • [14] Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl Clay Sci. 2009;43(3–4):392–400. https://doi.org/10.1016/j.clay.2008.11.007.
  • [15] Butler M, Mechtcherine V, Hempel S. Durability of textile reinforced concrete made with AR glass fibre: effect of the matrix composition. Mater Struct. 2010;43(10):1351–68. https://doi.org/10.1617/s11527-010-9586-8.
  • [16] Dong Z, Deng M, Zhang C, et al. Tensile behavior of glass textile reinforced mortar (TRM) added with short PVA fibers. Constr Build Mater. 2020;260: 119897. https://doi.org/10.1016/j.conbuildmat.2020.119897.
  • [17] Pekmezci BY, Çopuroğlu A. Mechanical properties of carbon-fabric-reinforced high-strength matrices. Materials. 2020;13(16):3508. https://doi.org/10.3390/ma13163508.
  • [18] Zhu D, Peled A, Mobasher B. Dynamic tensile testing of fabriccement composites. Constr Build Mater. 2011;25(1):385–95. https://doi.org/10.1016/j.conbuildmat.2010.06.014.
  • [19] Zhu D, Mobasher B, Peled A. Experimental study of dynamic behavior of cement-based composites. J Sustain Cem-Based. 2013;2(1):1–12. https://doi.org/10.1080/21650373.2012.757831.
  • [20] Cohen Z, Peled A. Controlled telescopic reinforcement system of fabric-cement composites-durability concerns. Cement Concrete Res. 2010;40(10):1495–506. https://doi.org/10.1016/j.cemconres. 2010.06.003.
  • [21] Cohen Z, Peled A. Effect of nanofillers and production methods to control the interfacial characteristics of glass bundles in textile fabric cement-based composites. Compos Part A-Appl S. 2012;43(6):962–72. https://doi.org/10.1016/j.compositesa.2012.01.022.
  • [22] B. Banholzer, Bond behaviour of a multi-filament yarn embedded in a cementitious matrix, Bibliothek der RWTH Aachen, 2004. http://publications.rwth-aachen.de/record/59781/files/Banholzer_Bjoern.pdf.
  • [23] Banholzer B. Bond of a strand in a cementitious matrix. Mater Struct. 2006;39(10):1015–28. https:// doi. org/ 10. 1617/s11527-006-9115-y.
  • [24] Dong Z, Deng M, Dai J, et al. Diagonal compressive behavior of unreinforced masonry walls strengthened with textile reinforced mortar added with short PVA fibers. Eng Struct. 2021;246: 113034. https://doi.org/10.1016/j.engstruct.2021.113034.
  • [25] Wang X, Lam CC, Iu VP. Comparison of different types of TRM composites for strengthening masonry panels. Constr Build Mater. 2019;219:184–94. https://doi.org/10.1016/j.conbuildmat.2019.05.179.
  • [26] D’Antino T, Carozzi FG, Poggi G. Diagonal shear behavior of historic walls strengthened with composite reinforced mortar (CRM). Mater Struct. 2019;52:114. https:// doi. org/ 10. 1617/s11527-019-1414-1.
  • [27] Tilocca AR, Incerti A, Bellini A, Savoia M. Influence of matrix properties on FRCM-CRM strengthening systems. Key Eng Mater. 2019;817:478–85. https://doi.org/10.4028/www.scientific.net/KEM.817.478.
  • [28] Triantafillou TC. Textile fibre composites in civil engineering. Woodhead Publ. 2016. https://doi.org/10.1016/B978-1-78242-446-8.00002-1.
  • [29] De Santis S, Carozzi FG, de Felice G, et al. Test methods for textile reinforced mortar systems. Compos Part B. 2017;127:121–32. https://doi.org/10.1016/j.compositesb.2017.03.016.
  • [30] Brameshuber W, Hinzen M, Dubey A, et al. Recommendation of RILEM TC 232-TDT: test methods and design of textile reinforced concrete: uniaxial tensile test: test method to determine the load bearing behavior of tensile specimens made of textile reinforced concrete. Mater Struct. 2016;49(12):4923–7. https://doi.org/10.1617/s11527-016-0839-z.
  • [31] GB/T 36262–2018, Fiber reinforced polymer composite grids for civil engineering, Beijing (CN), 2018.
  • [32] GB/T 1447–2016, Fiber-reinforced plastics composites-Determi-nation of tensile properties, Beijing (CN), 2016.
  • [33] JC/T 2461–2018, Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites, Beijing (CN), 2018.
  • [34] DBJ61/T112–2016, Technical specification for application of high ductile concrete, Xi’an (CN), 2016.
  • [35] Li VC. Engineered cementitious composites (ECC): bendable concrete for sustainable and resilient infrastructure. Springer; 2019. https://doi.org/10.1007/978-3-662-58438-5.
  • [36] GB/T 50081. Standard for test methods of concrete physical and mechanical properties. Beijing (CN), 2019.
  • [37] Caggegi C, Lanoye E, Djama K, et al. Tensile behaviour of a basalt TRM strengthening system: influence of mortar and reinforcing textile ratios. Compos Part B. 2017;130:90–102. https://doi.org/10.1016/j.compositesb.2017.07.027.
  • [38] D’Antino T, Papanicolaou C. Mechanical characterization of textile reinforced inorganic-matrix composites. Compos Part B. 2017;127:78–91. https://doi.org/10.1016/j.compositesb.2017.02.034.
  • [39] Hegger J, Voss S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Eng Struct. 2008;30(7):2050–6. https://doi.org/10.1016/j.engstruct.2008.01.006.
  • [40] Li B, Xiong H, Jiang J, et al. Tensile behavior of basalt textile grid reinforced engineering cementitious composite. Compos Part B. 2019;156:185–200. https://doi.org/10.1016/j.compositesb.2018.08.059.
  • [41] Zhu ZF, Wang WW, Yin SP, et al. A modified model for predicting cyclic stress-strain relationship of fiber reinforced polymer grid reinforced engineered cementitious composites. Struct Concrete. 2021;22(1):22–37. https://doi.org/10.1002/suco.201900304.
  • [42] Dinh NH, Park SH, Choi KK. Effect of dispersed micro-fibers on tensile behavior of uncoated carbon textile-reinforced cementitious mortar after high-temperature exposure. Cement Concrete Comp. 2021;118: 103949. https://doi.org/10.1016/j.cemconcomp.2021.103949.
  • [43] Ferrara G, Caggegi C, Martinelli E, et al. Shear capacity of masonry walls externally strengthened using Flax-TRM composite systems: experimental tests and comparative assessment. Constr Build Mater. 2020;261: 120490. https://doi.org/10.1016/j.conbuildmat.2020.120490.
  • [44] ACI 549.4R-13, Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) system for repair and strengthening concrete and masonry structures, American concrete institute, US, 2013.
  • [45] Faella C, Martinelli E, Nigro E, et al. Shear capacity of masonry walls externally strengthened by a cement-based composite material: an experimental campaign. Constr Build Mater. 2010;24(1):84–93. https://doi.org/10.1016/j.conbuildmat.2009.08.019.
  • [46] Dong Z, Deng M, Zhang C. Experimental investigation on uniaxial tension behavior of textile-reinforced highly ductile concrete. Chin Civil Eng J. 2020;53(10):13–25. https://doi.org/10.15951/j.tmgcxb.2020.10.002.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2933eba1-b212-4128-8c0f-e8d0c90ad744
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.