PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Exergetic sustainability indicators of a polymer electrolyte membrane fuel cell at variable operating conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the exergetic sustainability indicators of polymer electrolyte membrane (PEM) fuel cell, this paper studied the effects of irreversibility of thermodynamics on some exergetic sustainability indicators of PEM fuel cell under changing operating temperature, operating pressure and current density. Some conclusions are drawn by analyzing the curves. As the operating temperature increases, the negative impact of PEM fuel cell on various parameters due to irreversibility decreases; As the operating pressure increases, the negative impact of PEM fuel cell on various parameters due to irreversibility decreases; On the other hand, with the increase of current density, the negative impact of the PEM fuel cell on various parameters due to irreversibility increases.
Rocznik
Strony
183--204
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Nanjing Forestry University Coll Automobile & Traff Engn, Nanjing 210037, Jiangsu, China
autor
  • The 723th Institute, China Shipbuilding Industry Corporation, Yangzhou, 225001, China
autor
  • Nanjing Forestry University Coll Automobile & Traff Engn, Nanjing 210037, Jiangsu, China
Bibliografia
  • [1] Cengel Y., Bole M.: Thermodynamics: An Engineering Approach. McGraw-Hill, New York 1994.
  • [2] Dincer I.: Technical, environmental and exergetic aspects of hydrogen energy systems. Int. J. Hydrogen Energ. 27(2002), 3, 265–285.
  • [3] Kazim A.: Exergy analysis of a PEM fuel cell at variable operating conditions. Energ. Convers. Manage. 45(2004), 11/12, 1949–1961.
  • [4] Mert S.O., Dincer I., Ozcelik Z.: Exergoeconomic analysis of a vehicular PEM fuel cell system. J. Power Sources 165(2007), 1, 244–252.
  • [5] Barelli L., Bidini G., Gallorini F. et al.: An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell. Appl. Energ. 88(2011), 12, 4334–4342.
  • [6] Midilli A., Dincer I.: Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability. Int. J. Hydrogen Energ. 34(2009), 9, 3858–3872.
  • [7] Ay M., Midilli A., Dincer I.: Exergetic performance analysis of a PEM fuel cell. Int. J. Energ. Res. 30(2006), 5, 307–321.
  • [8] Hanapi S., Tijani A.S., Rahim A.H.A., Mohamed W.A.N.W.: Comparison of a prototype PEM fuel cell powertrain power demand and hydrogen consumption based on inertia dynamometer and on-road tests. In: Proc. Int. Conf. on Alternative Energy in Developing Countries and Emerging Economies, Selangor 2015.
  • [9] Rosen M.A., Dincer I., Kanoglu M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energ. Policy 36(2008), 1, 128– 137.
  • [10] Midilli A., Inac S., Ozsaban M.: Exergetic sustainability indicators for a high pressure hydrogen production and storage system. Int. J. Hydrogen Energ. 42(2017),33, 21379–21391.
  • [11] Tayfun Özgür, Yakaryilmaz A.C.: Thermodynamic analysis of a proton exchange membrane fuel cell. Int. J. Hydrogen Energ. 43(2018), 38, 18007–18013.
  • [12] Balli O., Sohret Y., Karakoc H.T.: The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. Int. J. Hydrogen Energ. 43(2018), 23, 10848–10858.
  • [13] Ghritlahre H. K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
  • [14] Carmo M., Fritz D.L., J. Mergel et al.: A comprehensive review on PEM electrolysis. Int. J. Hydrogen Energ. 38(2013), 12, 4901–4934.
  • [15] Li C., Liu Y., Xu B., Ma Z.: Finite time thermodynamic optimization of an irreversible proton exchange membrane fuel cell for vehicle use. Processes 7(2019), 7,419
  • [16] Obara S., Tanno I., Kito S. et al.: Exergy analysis of the woody biomass Stirling engine and PEM-FC combined system with exhaust heat reforming. Int. J. Hydrogen Energ. 33(2008), 9, 2289–2299.
  • [17] Ayoub Kazim.: Exergy analysis of a PEM fuel cell at variable operating conditions. Energ. Convers. Manage. 45(2003), 11–12, 1949–1961.
  • [18] Taner T.: Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy 143(2018), 15, 284–294.
  • [19] El-Emam R.S., Dincer I., Naterer G.F.: Energy and exergy analyses of an integrated SOFC and coal gasification system. Int. J. Hydrogen Energ. 37(2012), 2, 1689–1697.
  • [20] Granovskii M., Dincer I., Rosen M.A.: Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int. J. Hydrogen Energ. 31(2006), 3, 337–352.
Uwagi
Work was cofunding within the framework of The Jiangsu Provincial Key Research and Development Program (No. BE2017008), China and Scientific Research Foundation of Nanjing Forestry University (No. GXL2018004).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2931ea94-1b5d-4e91-b0c0-954582a93167
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.