PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intensive green roofs as an element of green infrastructure in urban areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Intensywne zielone dachy jako element zielonej infrastruktury na obszarach miejskich
Języki publikacji
EN
Abstrakty
EN
Intensive green roofs as an element of green infrastructure in urban areas. The purpose of this publication is to discuss the potential and limitations of using woody vegetation in intensive green roofs in the context of sustainable urban development. Intensive green roofs, with deep substrates supporting woody vegetation, require complex technical solutions, careful species selection, and regular maintenance. Compared to extensive roofs with grasses and succulents, they are more challenging to implement, but provide significant ecological benefits, including increased biodiversity, new habitats for birds and pollinators, as well mitigation of the urban heat island effect. Functioning as artificial ecosystems linked to natural ones, they demand responsible management and strict control of species to prevent invasions by non-native plants.
PL
Intensywne zielone dachy jako element zielonej infrastruktury na obszarach miejskich. W artykule omówiono potencjał i ograniczenia wykorzystania roślinności drzewiastej na intensywnych zielonych dachach w kontekście zrównoważonego rozwoju miast. Intensywne zielone dachy to rozwiązania charakteryzujące się znaczną grubością substratu oraz możliwością nasadzenia roślinności drzewiastej. W odróżnieniu od dachów ekstensywnych, obsadzanych roślinnością zielną (głównie trawami i sukulentami), wymagają one bardziej złożonych rozwiązań technicznych, bardzo starannego doboru gatunków oraz regularnej i kosztownej pielęgnacji. Z tego względu są trudniejsze do założenia i utrzymania, ale jednocześnie oferują szerszy zakres korzyści ekologicznych. Do najważniejszych korzyści ekologicznych należą: wzrost bioróżnorodności, np. tworzenie siedlisk dla ptaków, czy drastycznie zmniejszających się w środowiskach wielkomiejskich populacji owadów zapylających; redukcja efektu miejskich wysp ciepła, będących efektem powszechnej w miastach „betonozy” Intensywne zielone dachy stanowią jednak sztuczne ekosystemy, funkcjonujące w bezpośrednim powiązaniu z ekosystemami naturalnymi, co wymaga odpowiedzialnego zarządzania nimi i ścisłej kontroli gatunków, zwłaszcza w kontekście ryzyka inwazyjności roślin obcych.
Twórcy
  • Department of Wood Science and Wood Preservation, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
  • Department of Wood Science and Wood Preservation, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. ABUSEIF, M., DUPRE, K., MICHAEL, R. N. (2021). The effect of green roof configurations including trees in a subtropical climate: A co-simulation parametric study, Journal of Cleaner Production 317, 128458; 10; https://doi.org/10.1016/j.jclepro.2021.128458.
  • 2. ABUSEIF, M., DUPRÉ, K., & MICHAEL, R. N. (2023). Trees on Buildings: A Design Framework, Nature-Based Solutions 3, 100052; 11; https://doi.org/10.1016/j.nbsj.2023.100052.
  • 3. ABUSEIF, M, DUPRE, K., MICHAEL, R. N. (2023). Trees on Buildings: A Tree Selection Framework Based on Industry Best Practice, Land 12(1); 97; 23; https://doi.org/10.3390/land12010097.
  • 4. ADAPTATION COMMUNITY (2024). Implementation guideline: Green walls and green roofs, 47; https://www.adaptationcommunity.net/wp-content/uploads/2024/04/Implementation-Guideline-Green-walls-and-green-roofs.pdf.
  • 5. ALOISIO, J. M., PALMER, M. I., TUININGA, A.R., & LEWIS J. D. (2019). Plant colonization of green roofs is affected by composition of established native plant communities, Frontiers in Ecology and Evolution 6, 238; 12; https://doi.org/10.3389/fevo.2018.00238.
  • 6. BERARDI, U., GHAFFARIANHOSEINI, A., & GHAFFARIANHOSEINI, A. (2014). State-of-the-art analysis of the environmental benefits of green roofs, Applied Energy, 115; 411–428; https://doi.org/10.1016/j.apenergy.2013.10.047.
  • 7. BŁASZCZYŃSKI, T. (2014). Dachy: Podstawy projektowania i wykonawstwa. Wrocław, Dolnośląskie Wydawnictwo Edukacyjne, ISBN 978-83-7125-242-6; 443.
  • 8. CAO, J., TAMURA, Y., & YOSHIDA, A. (2013). Wind tunnel investigation of wind loads on rooftop model modules for green roofing systems, Journal of Wind Engineering and Industrial Aerodynamics, 118, 20-34; https://doi.org/10.1016/j.jweia.2013.04.006.
  • 9. CASCONE, S. (2019). Green Roof Design: State of the Art on Technology and Materials, Sustainability 11(11), 3020; 27; https://doi.org/https://doi.org/10.3390/su11113020
  • 10. CHARPENTIER, S. (2011). Simulation of heat exchange phenomena and water regime in green roof substrates. Acta Hortic 891; 187-194; https://doi.org/10.17660/ActaHortic.2011.891.21.
  • 11. CURRIE, B. A., BASS, B. (2008). Estimates of air pollution mitigation with green plants and green roofs using the UFORE model, Urban Ecosystems 11(4); 409-422; https://doi.org/10.1007/s11252-008-0054-y.
  • 12. COLLA, S., WILLIS, E., PACKER, L. (2009). Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? Cities and the Environment (CATE). 2 (1), 4; 12; https://doi.org/10.15365/cate.2142009.
  • 13. DUNNETT, N., & KINGSBURY, N. (2008). Planting Green Roofs and Living Walls, Timber Press, 133 S.W. Second Ave., Suite 450, Portland, OR 97204-3527, USA, ISBN 13:978-0-88192-911-9; 328.
  • 14. DUNNETT, N., NAGASE, A., & HALLAM, A. (2008). The dynamics of planted and colonising species on a green roof over six growing seasons 2001-2006: influence of substrate depth, Urban Ecosystems 11; 373–384; https://doi.org/10.1007/s11252-007-0042-7.
  • 15. FABIANI, C., COMA J., PISELLO, A. L., PEREZ, G., COTANA, F., & CABEZA, L. F., (2018). Thermo-acoustic performance of green roof substrates in dynamic hygrothermal conditions, Energy and Buildings 178; 140-153, https://doi.org/10.1016/j.enbuild.2018.08.024.
  • 16. FORSCHUNGSGESELLSCHAFT LANDSCHAFTSENTWICKLUNG LANDSCHAFTSBAU E. V.) (FLL) (2018). Green Roof Guidelines: Guidelines for the Planning, Construction and Maintenance of Green Roofs (2018 ed.), Bonn, Germany; 158; FLL. Retrieved from https://commons.bcit.ca/greenroof/files/2019/01/FLL_greenroofguidelines_2018.pdf.
  • 17. GETTER, K. L., & ROWE, D. B. (2006). The role of green roofs in sustainable development, HortScience 41(5), 1276-1285, https://doi.org/10.21273/HORTSCI.41.5.1276.
  • 18. GETTER, K. L., ROWE, D. B., ROBERTSON, G. P., CREGG, B. M., & ANDRESEN, J. A. (2009). Carbon sequestration potential of extensive green roofs. Environmental Science and Technology 43(19); 7564–7570, https://doi.org/10.1021/es901539x.
  • 19. GŁADYSZ, K., WROCHNA, M., & POPEK, R. (2025). Tracking Particulate Matter Accumulation on Green Roofs. A Study at Warsaw University Library, Air 3(1), 4, 19, https://doi.org/10.3390/air3010004.
  • 20. GREEN ROOF ORGANISATION (GRO) (2023). The GRO Green Roof Code: Code of Best Practice (June 2023 edition), United Kingdom: Green Roof Organisation; 54. (Retrieved from https://www.greenrooforganisation.org/wp-content/uploads/2023/06/The-GRO_Green-Roof-Code_June-23.pdf.
  • 21. GREGOIRE, B. G., CLAUSEN, J. C. (2011). Effect of a modular extensive green roof on stormwater runoff and water quality, Ecological Engineering 37(6), 963-969; https://doi.org/10.1016/j.ecoleng.2011.02.004.
  • 22. HUNTER, M. R., GILLESPIE, B. W., CHEN, S. Y.-P. (2019). Urban nature experiences reduce stress in the context of daily life based on salivary biomarkers, Frontiers in Psychology 10, 16; https://doi.org/10.3389/fpsyg.2019.00722.
  • 23. JAFFAL, I., OULDBOUKHITINE, S. E., BELARBI, R. (2012). A comprehensive study of the impact of green roofs on building energy performance, Renewable Energy 43, 157-164, https://doi.org/10.1016/j.renene.2011.12.004.
  • 24. JOHANSSON, P., EKSTRAND-TOBIN, A., SVENSSON, T., & BOK G. (2012). Laboratory study to determine the critical moisture level for mould growth on building materials, International Biodeterioration & Biodegradation 73; 23-32, https://doi.org/10.1016/j.ibiod.2012.05.014.
  • 25. KADER, S., CHADALAVADA, S., LIZNY, J., SPALEVIC, V., & DUDIC B. (2022). Green roof substrates - A literature review, Frontiers in Built Environment 8, 1019362, 15, https://doi.org/10.3389/fbuil.2022.1019362.
  • 26. KAZEMI, M., COURARD, L., & HUBERT J. (2021). Heat Transfer Measurement within Green Roof with Incinerated Municipal Solid Waste Aggregates. Sustainability 13(13), 7115, 12, https://doi.org/10.3390/su13137115.
  • 27. KINLOCK, N. L., SCHINDLER, B.Y., & GUREVITCH, J. (2016). Biological invasions in the context of green roofs, Israel Journal of Ecology and Evolution 62(1-2), 32-43, https://doi.org/10.1080/15659801.2015.1028143.
  • 28. KOTOWSKI, A. (2024). Zielone dachy a retencja wody: Połączenie ekologii z architekturą, AndrzejKotowski.pl.; https://www.andrzejkotowski.pl/zielone-dachy-a-retencja-wody-polaczenie-ekologii-z-architektura.
  • 29. MADRE, F., VERGNES, A., MACHON, N., & CLERGEAU, P. (2014). Green roofs as habitats for wild plant species in urban landscapes: first insights from a large-scale sampling, Landscape and Urban Planning, 122, 100-107, https://doi.org/10.1016/j.landurbplan.2013.11.012.
  • 30. MARKONIS, Y., KUMAR, R., HANEL, M., RAKOVEC, O., MÁCA, P., & AGHAKOUCHAK, A. (2021). The rise of compound warm-season droughts in Europe, Science Advances 7, eabb9668; 7, https://doi.org/10.1126/sciadv.abb9668.
  • 31. MENTENS, J., RAES, D., & HERMY, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77(3). 217-226, https://doi.org/10.1016/j.landurbplan.2005.02.0.
  • 32. MINNESOTA POLLUTION CONTROL AGENCY (2022). Types of green roofs. Minnesota Stormwater Manual, https://stormwater.pca.state.mn.us/index.php/Types_of_green_roofs.
  • 33. MUN, D. S., KANG, G., YANG, M., & KIM J. J. (2024). How trees’ drag and cooling effects influence airflow and temperature distributions around a street canyon, Building and Environment 264, 111913, 19, https://doi.org/10.1016/j.buildenv.2024.111913.
  • 34. OULDBOUKHITINE, S. E., BELARBI, R., & JAFFAL, I. (2011). Energy analysis of a green roof under climate conditions of France, Building and Environment 46(12); 2624-2631, https://doi.org/10.1016/j.buildenv.2011.06.021.
  • 35. PAWŁOWICZ, J. A. (2019). Dach zielony jako przyjazne rozwiązanie dla środowiska i ludzi na terenach zurbanizowanych. Budownictwo o Zoptymalizowanym Potencjale Energetycznym 8(2), 95-105, https://doi.org/10.17512/bozpe.2019.2.11.
  • 36. PERIVOLIOTIS, D., ARVANITIS, I., TZAVALI, A., PAPAKOSTAS, V., KAPPOU, S., ANDREAKOS, G., FOTIADI, A., PARAVANTIS, J.A., SOULIOTIS, M., & MIHALAKAKO, G. (2023). Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies, Sustainability 15(22), 15976, 25, https://doi.org/10.3390/su152215976.
  • 37. RAZIEH, E., PAÇO T.A., MARTINS, D., & ARSÉNIO, P. (2022). Increasing the resistance of Mediterranean extensive green roofs by using native plants from old roofs and walls. Ecological Engineering, 178 (3), 106576, 11, https://doi.org/10.1016/j.ecoleng.2022.106576.
  • 38. RODRIGUES, M., ARSÉNIO, P., PAÇO, T. A. D. (2024). The Use of Drought-Tolerant Vegetation on Green Roofs: A Method for the Digital Photographic Monitoring of Its Development. Horticulturae, 10(1), 106, 23. https://doi.org/10.3390/horticulturae10010106
  • 39. ROWE, D. B. (2011). Green roofs as a means of pollution abatement. Environmental Pollution 159 (8-9), 2100–2110. https://doi.org/10.1016/j.envpol.2010.10.029
  • 40. SANTAMOURIS, M. (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments, Solar Energy 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003
  • 41. SEMPRI, PL. (2024). Zielony dach – czy warto? Koszty, korzyści i proces realizacji. Sempri.pl.; https://sempri.pl/zielony-dach-czy-warto-koszty-korzysci-i-proces-realizacji.
  • 42. SETO, K.C., FRAGKIAS, M., GÜNERALP, B., & REILLY, M. K. (2011). A Meta-Analysis of Global Urban Land Expansion, PLoS ONE 6(8). e23777. 9 https://doi.org/10.1371/journal.pone.0023777
  • 43. SHAO, B., VALEO, C., MUKHOPADHYAYA, P., & HE, J. (2021). Influence of Temperature and Moisture Content on Thermal Performance of Green Roof Media. Energies, 14(9), 2421. https://doi.org/10.3390/en14092421
  • 44. SHAHMOHAMMAD, M., HOSSEINZADEH, M., DVORAK, B., BORDBAR, F., SHAHMOHAMMADMIRAB, H. & AGHAMOHAMMADI, N. (2022). Sustainable green roofs: a comprehensive review of influential factors. Environmental Science and Pollution Research. 29. 78228-78254, https://doi.org/10.1007/s11356-022-23405-x.
  • 45. SIGIKUMAR, T. S., SHAFI, K., A., THOMAS, R., J. & SUDHER A. (2022) Experimental analysis on heat mitigation potential of stacked coir fiber mat and perlite as an alternative for green roof. Journal of Industrial Textiles. 52. https://doi.org/10.1177/15280837221126190
  • 46. SPEAK, A., F., ROTHWELL, J., J., LINDLEY, S. J. & SMITH, C., L. (2012) Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmospheric Environment. 61. 283-293. https://doi.org/10.1016/j.atmosenv.2012.07.043.
  • 47. SPEAK, A. F., ROTHWELL, J. J., LINDLEY, S. J., & SMITH, C. L. (2013). Rainwater runoff retention on an aged intensive green roof, Science of the Total Environment, 461-462, 28–38. https://doi.org/10.1016/j.scitotenv.2013.04.085.
  • 48. TECHNEAU, PL. (2025). Retencja wody w zielonych dachach – analiza przykładów, Techneau.pl., https://techneau.pl/retencja-wody-w-zielonych-dachach-analiza-przykladow.
  • 49. TONIETTO, R. K., FANT, J.B., ASCHER, J. S., ELLIS, K. E., & LARKIN, D. J. (2011). A comparison of bee communities of Chicago green roofs, parks and prairies. Landscape and Urban Planning, 103(1), 102-108, https://doi.org/10.1016/j.landurbplan.2011.07.004.
  • 50. ZHENG, X., ZOU Y., LOUNSBURY, A.W., WANG, C., & WANG, R. (2021). Green roofs for stormwater runoff retention: A global quantitative synthesis of the performance, Resources. Conservation & Recycling. 170, 105577; 11. https://doi.org/10.1016/j.resconrec.2021.105577.
  • 51. TZOULAS, K., KORPELA, K., VENN, S., Yli-Pelkonen, V., KAŹMIERCZAK, A., NIEMELÄ, J., & JAMES, P. (2007). Promoting ecosystem and human health in urban areas using green infrastructure: A literature review, Landscape and Urban Planning 81(3), 167-178, https://doi.org/10.1016/j.landurbplan.2007.02.001.
  • 52. WILLIAMS, N. S. G., LUNDHOLM, J., & MACIVOR J. S. (2014). Do green roofs help urban biodiversity conservation? Journal of Applied Ecology 51(6), 1643-1649. https://doi.org/10.1111/1365-2664.12333.
  • 53. VANWOERT, N. D., ROWE, D. B., ANDRESEN, J. A., RUGH C. L., R. THOMAS, FERNANDEZ, R. T., & XIAO, L. (2005). Green roof stormwater retention: effects of roof surface, slope, and media depth. Journal of Environmental Quality 34(3), 1036-1044. https://doi.org/10.2134/jeq2004.0364.
  • 54. VANWOERT, N. D., ROWE, D. B., ANDRESEN, J. A., RUGH, C. L., & XIAO, L. (2005). Watering regime and green roof substrate design affect Sedum plant growth. HortScience 40(3), 659-664. https://doi.org/10.21273/HORTSCI.40.3.659.
  • 55. VILČEKOVÁ S., BUDAJOVÁ J., HARČÁROVÁ K., MÉSÁROŠ, P., KRÍDLOVÁ, BURDOVÁ, E., & ZIMERMANN, R. (2024). 'The impact of green roofs' composition on its overall life cycle. Journal of Environmental Management. 369, 122363; 31, https://doi.org/10.1016/j.jenvman.2024.122363.
  • 56. YANG, J., YU, Q., & GONG, P. (2008). Quantifying air pollution removal by green roofs in Chicago, Atmospheric Environment 42(31); 7266-7273; https://doi.org/10.1016/j.atmosenv.2008.07.003.
  • 57. ZHAO, Y., LI, H., BARDHAN, R., KUBLILAY, A., LI, Q. & CARMELIET, J. (2023). The time-evolving impact of tree size on nighttime street canyon microclimate: Wind tunnel modelling of aerodynamic effects and heat removal. arXiv 2301, 05766. 29, https://doi.org/10.48550/arXiv.2301.05766.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2931cd54-6789-4eb1-b9fd-20081f3d38e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.