Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article discusses tests concerning the assessment of the corrosion resistance, properties and the structure of TIG braze welded galvanised steel sheets. Test butt joints were made of 0.9 mm thick galvanised car body steel sheets DC04 (in accordancewith EN 10130), using a robotic welding station and a CuSi3Mn1 braze (in accordance with PN-EN 13347:2003) wire having a diameter of 1.0 mm. The research-related tests aimed to optimise braze welding parameters and the width of the brazing gap. The test joints were subjected to visual tests, macro and microscopic metallographic tests, hardness measurements as well as tensile and bend tests. The corrosion resistance of the joints was identified using the galvanostatic method. The tests revealed that it is possible to obtain high quality joints made of galvanised car body steel sheets using the TIG braze welding process, the CuSi3Mn1 braze and a brazing gap, the width of which should be restricted within the range of 0.4 mm to 0.7 mm. In addition, the joints made using the aforesaid parameters are characterised by high mechanical properties. The minimum recommended heat input during process, indispensable for the obtainment of the appropriate spreadability of the weld deposit should be restricted within the range of 50 kJ/mm to 70 kJ/mm. At the same time, the aforesaid heat input ensures the minimum evaporation of zinc. Joints made using the TIG braze welding method are characterised by high resistance to electrochemical corrosion. The galvanostatic tests did not reveal any traces of corrosion in the joint area.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--54
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab.
Twórcy
autor
- Silesian University of Technology, Department of Welding Engineering, 18a Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
- [1] B. Godec, V. Grdun, Welding World 45, 49-56 (2001).
- [2] A. Klimpel, A. Czupryński, J. Górka, Przegląd Spawalnictwa 9-10, 72-75 (2006).
- [3] M. J. Rathod, M. Kutsuna, Welding Journal 83 (1), 16-26 (2004).
- [4] A. Klimpel, A. Czupryński, J. Górka, Biuletyn Instytutu Spawalnictwa 6, 39-43 (2006).
- [5] H. T. Zhang, J. C. Feng et al., Materials Characterization 58 (7), 588-592 (2007).
- [6] U. Füssel, J. Zschetzsche, U. Szieslo, Der Praktiker 54/10, 336-340 (2002).
- [7] U. Draugelates, B. Bouaifi, Welding Journal 3, 38-42 (2002).
- [8] P. Kah, R. Suoranta, J. Martikainen, International Journal of Advanced Manufacturing Technology 67 (1-4), 655-674 (2013).
- [9] Y. Shi, J. Lie, G. Zhang et al., Journal of Materials Engineering and Performance 25 (5), 1916-1923 (2016).
- [10] J. Wloka, H. Laukant, U. Glatzel al., Corrosion Science 49 (11), 4243-4258 (2007).
- [11] P. Białucki, A. Ambroziak, W. Derlukiewicz, A. Lange, T. Bednarek, Przegląd Spawalnictwa 9, 20-28 (2013).
- [12] H. He, C. Yang, S. Lin et al., Science and Technology of Welding and Joining 19 (6), 527-533 (2014).
- [13] M. De Dompablo, Przegląd Spawalnictwa 7-8, 12-17 (2009).
- [14] M. Marya, G. Edwards, Welding World 44 ( 2), 31-37 (2000).
- [15] A. Zieliński, G. Golański, M. Sroka, Mat. Sci. Eng. A-Struct. 682, 664-672 (2017).
- [16] M. Sroka, A. Zieliński, M. Dziuba-Kałuża, M. Kremzer, M. Macek, A. Jasiński, Metals 7 (3), 82 (2017).
- [17] A. Mathieu, S. Pontevicci at al., Material Science and Engineering 435, 19-28 (2006).
- [18] W. Reimann, M. Dobler et al., International Journal of Advanced Manufacturing Technology 90, 317-328 (2017).
- [19] M. J. Zhang, G. Y. Chen, Y. Zhang, K. R. Wu, Materials & Design 45, 24-30 (2013).
- [20] F. Klocke, S. Frank, Science and Technology of Welding and Joining 18, 62-69 (2003).
- [21] T. Chmielewski, P. Siwek, M. Chmielewski, A. Piątkowska, A. Grabias, D. Golański, Metals 8/12, 1059 (2018).
- [22] R. Parkitny, J. Winczek, International Journal of Heat and Mass Transfer 60, 469-479 (2013).
- [23] J. Cheng, J. Zhao et al., Materials 12 (1651), (2019).
- [24] T. Chmielewski, D. Golański, W. Włosiński, J. Zimmerman, Bulletin of the Polish Academy of Sciences Technical Sciences 63/1, 201-207 (2015).
- [25] T. Chmielewski, D. Golański, W. Włosiński, Bulletin of the Polish Academy of Sciences Technical Sciences 63/2, 449-456 (2015).
- [26] A. Czupryński, J. Górka, M. Adamiak, Metalurgija 55/2, 173-176 (2016).
- [27] J. Lin, N. Ma, Y. Lei et al., Journal of Materials Processing Technology 213 (8), 1303-1310 (2013).
- [28] E. Kornienko, R. Ossenbrink, V. Michailov, Corrosion Science 69, 270-280 (2013).
- [29] R. Cao, G. Yu, J. Chen, et al., Journal of Materials Processing Technology 213 (10), 1753-1763 (2013).
Uwagi
EN
1. This research was co-funded by the statutory subsidy of the Faculty of Mechanical Engineering at the Silesian University of Technology in 2018.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29305ca2-3f2e-4d4a-9806-7e1e3bc6c62d