PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Chromium (VI) on Raw and Modified Carpathian Diatomite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the research on the usability of natural Carpathian diatomite for removing chromate ions from water solutions. The concentration of chromium (VI) in test water was C0 = 1 g/m3. Both raw diatomite and the diatomite modified with iron compounds of granulation 0.5–1.0 mm were tested. The process kinetics, as well as the effect of water reaction and the diatomite type on chromium sorption were determined under static conditions (no through flow). For both diatomite types, the chromium adsorption proceeded most effectively at pH 4. The effect of diatomite modification with iron compounds on the effectiveness of chromium (VI) adsorption was determined on the basis of Freundlich adsorption isotherm. Compared to raw diatomite, the modified adsorbent (diatomite-Fe) exhibited great sorption capacity for chromate ions from water. When applied under dynamic conditions (v = 4 m/h), as filtration bed, it removed chromium compounds from water very effectively. It makes diatomite-Fe material a promising candidate for application in water treatment systems. The chromium concentration in the effluent oscillated within Ck = 0.001–0.002 mg/dm3, and the adsorption capacity of the bed, determined in the bed breakthrough point, reached Pp = 316.8 mg/kg.
Słowa kluczowe
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Poland
  • Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Poland
Bibliografia
  • 1. Alutndogan H.S., 2005. Cr(VI) removal from aqueous solution by iron (III) hyroxide-loaded sugar beet pulp, Process Biochemistry, 40 (3–4), 1443–1452.
  • 2. Barabasz W., Chmiel M.J., Galus A., Pasmionka I., 1998. Ecotoxicology of chromium, Ecological Chemistry and Engineering5(8–9), 665–669.
  • 3. Chojnacka M., Sobolewska P., Petrus R., Warchoł J., 2017. Sorpcja jonów Cr(VI) na powierzchniowo modyfikowanych zeolitach naturalnych. Przemysł Chemiczny 96(2), 332–337.
  • 4. Dantas T.N., Dantas Neto A. A., De A. Moura M. C. P. , 2001. Removal of chromium from aqueous by diatomite treated with microemulsion, Water Res. 35(9), 2219–2224.
  • 5. Diatomite products, 2004. Specialized Mining Company „Górtech” Sp.z o.o.
  • 6. Dubey P. S., 2007. Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: A comparative study, Journal of Hazardous Materials 145, 465–470.
  • 7. Gupta V. K, Mohan D. Kharma S., Park K.T., 1999. Removal of chromium VI from electroplating industry wastewaterusing bagasse fly ash–a sugar industry waste material, The Environmentalist 19, 129–136.
  • 8. Guru M., Venedik D., Murathan A., 2008. Removal of trivalent chromium from water using low cost natural diatomite, Journal of Hazardous Materials, 160, 318–323.
  • 9. Janusz W. 2000. The electrical double layer parameters for the group 4 metal oxide/electrolyte system, Adsorpt. Sci. Technol., 18(2), 117–134.
  • 10. Janusz W., Skwarek E., Gałgan A., 2002. Electrical double layer at zirconium silicate/electrolyte solution interface, Pol. J. Chem., 76(5), 745–754.
  • 11. Karatepe N., Erdogan N., Ersoy-Mericboyu A., Kucukbayrak S., 2004. Preparation of diatomite/Ca(OH)2 sorbents and modelling their sulphation reaction, Chemical Engineering Science 59, 3883–3889.
  • 12. Khraisheh M.A.M., Al-Degs Y. S., Mcminn W. A.M., 2004. Remediation of wastewater containing heavy metals using raw and modified diatomite, Chemical Engineering Journal 99, 177–184.
  • 13. Kim, S et al., 2016. Simultaneous removal of chromium(VI) and Reactive Black 5 using zeolite supported nano-scale zero-valent iron composite, Environmental Earth Sciences, 75, p. 447.
  • 14. Knoerr R., Brendle J., Lebeau B., Demais H., 2013. Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution, Microporous and Mesoporous Materials, 169, 185–191.
  • 15. Krishna B. S. Murty D. S., R, Prakash B. S. J., 2000. Thermodynamics of Chromium(VI) Anionic Species Sorption onto Surfactant-Modified Montmorillonite Clay, Journal of Colloid and Interface Science, 229, 230–236.
  • 16. Mohan D., Pittman C.U., 2006. Activated Carbons and Low-Cost Adsorbents for Remediation of Triand Hexavalent Chromium from Water: A Review” Journal of Hazardous Materials, B137, 762–811.
  • 17. Puszkarewicz A., 2004. Diatomites in environmental protection and economy, Scientific notebooks of the Rzeszów University of Technology, Civil and Environmental Engineering, 38, 109–118.
  • 18. Puszkarewicz A., 2010. Analysis of phenol adsorption on raw and modified Carpathian diatomites, Chemistry–Didactics-Ecology-Metrology, 15 (2), 189–193.
  • 19. Thirunavukkarasu O.S., Viraraghavan T., Subramanian K.S., 2003. Arsenic removal from drinking water using iron-coated sand, Water, Air and Soil Pollution, 142, 95–111.
  • 20. Wazwaz A., Al-Salaymeh A., Khan M., S., 2019. Removing Heavy Metals Through Different Types of Soils and Marble Powder Found in Oman, J. Ecol. Eng.; 20(4), 136–142.
  • 21. Verma A., Chakraborty S., Basu J.K., 2006. Adsorption study of hexavalent chromium using tamarind hull-based adsorbents, Separation and Purification Technology, 50, 336–341.
  • 22. Yu, X et al., 2014. Kinetics for adsorptive removal of chromium(VI) from aqueous solutions by ferri hydroxide/oxohydroxides, Ecotoxicology 23, 734–741.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-292eee15-f617-40e0-9758-8a6efb3af459
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.