PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring Vegetation Cover Changes by Sentinel-1 Radar Images Using Random Forest Classification Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vietnam is an Asian country with hot and humid tropical climate throughout the year. Forests account for more than 40% of the total land area and have a very rich and diverse vegetation. Monitoring the changes in the vegetation cover is obviously important yet challenging, considering such large varying areas and climatic conditions. A traditional remote sensing technique to monitor the vegetation cover involves the use of optical satellite images. However, in presence of the cloud cover, the analyses done using optical satellite image are not reliable. In such a scenario, radar images are a useful alternative due to the ability of radar pulses in penetrating through the clouds, regardless of day or night. In this study, we have used multi temporal C band satellite images to monitor vegetation cover changes for an area in Dau Tieng and Ben Cat districts of Binh Duong province, Mekong Delta, Vietnam. With a collection of 46 images between March 2015 and February 2017, the changes of five land cover types including vegetation loss and replanting in 2017 were analyzed by selecting two cases, using 9 images in the dry season of 3 years 2015, 2016 and 2017 and using all of 46 images to conduct Random Forest classifier with 100, 200, 300 and 500 trees respectively. The result in which the model with nine images and 300 trees gave the best accuracy with an overall accuracy of 98.4% and a Kappa of 0.97. The results demonstrated that using VH polarization, Sentinel-1 gives quite a good accuracy for vegetation cover change. Therefore, Sentinel-1 can also be used to generate reliable land cover maps suitable for different applications.
Rocznik
Tom
Strony
441--451
Opis fizyczny
Bibliogr. 27 poz., tab., wykr., zdj.
Twórcy
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
autor
  • Thu Dau Mot University, Binh Duong, Vietnam
  • Military of Technical Academy, 236 Hoang Quoc Viet, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
Bibliografia
  • 1. Kontgis, C., Schneider, A., Fox, J., Saksena, S., Spencer, J.H., Castrence, M., 2014. Monitoring periurbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography. 53: 377-388, https://doi.org/10.1016/j.apgeog.2014.06.029.
  • 2. Schaefer, M., Thinh, N.X., 2019. Evaluation of land cover change and agricultural protection sites: A GIS and Remote Sensing approach for Ho Chi Minh city, Vietnam. Heliyon, 5(5): e01773, https://doi.org/10.1016/j.heliyon.2019.e01773.
  • 3. Downes, N.K., Storch, H., Schmidt, M., Van Nguyen, T.C., Tran, T.N., 2016. Understanding Ho Chi Minh City’s urban structures for urban land-use monitoring and risk-adapted land-use planning, in Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities, Springer. 89-116, https://doi.org/10.1007/978-3-319-04615-0_6.
  • 4. Storch, H., Downes, N.K., 2011. A scenario-based approach to assess Ho Chi Minh City’s urban development strategies against the impact of climate change. Cities. 28(6): 517-526, https://doi.org/10.1016/j.cities.2011.07.002.
  • 5. Son, N.T., Chen, C.F., Chen, C.R., Thanh, B.X., Vuong, T.H., 2017. Assessment of urbanization and urban heat islands in Ho Chi Minh City, Vietnam using Landsat data. Sustainable cities and society. 30: 150-161, https://doi.org/10.1016/j.scs.2017.01.009.
  • 6. Aly, A.A., Al-Omran A.M., Sallam A.S., Al-Wabel M.I., 2016. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach. Solid Earth. 7(2): 713-725, https://doi.org/10.5194/se-7-713-2016.
  • 7. Tran, H.Hong, Tran, A.Van and Le, N.Thanh., 2020. Study on land use changes, causes and impacts by remote sensing, GIS and Delphi methods in the coastal area of Ca Mau province in 30 years (in Vietnamese). Journal of Mining and Earth Sciences. 61, 4 (Aug, 2020), 36-45. DOI:https://doi.org/10.46326/JMES.2020.61(4).04.
  • 8. Tran, A.Van, Nguyen, B.An, Dinh, T., Nguyen, Y.Hai Thi and Le, N.Thanh., 2020. Landslides detection in Bat Xat district, Lao Cai province, Vietnam using the Alos PalSAR time-series imagery by the SBAS method (in Vietnamese). Journal of Mining and Earth Sciences. 61, 4 (Aug, 2020), 1-10. DOI:https://doi.org/10.46326/JMES.2020.61(4).01.
  • 9 . Asner, G.P., 2001. Cloud cover in Landsat observations of the Brazilian Amazon. International Journal of Remote Sensing. 22(18): 3855-3862, https://doi.org/10.1080/01431160010006926.
  • 10.Sannier, C., McRoberts, R.E., Fichet, L.V., Makaga, E.M.K., 2014. Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sensing of Environment, 151: 138-148, https://doi.org/10.1016/j.rse.2013.09.015.
  • 11.Simard, M., Saatchi, S.S., De Grandi, G., 2000. The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2310-2321, DOI: 10.1109/36.868888.
  • 12.Engdahl, M.E., Hyyppa, J.M., 2003. Land-cover classification using multitemporal ERS-1/2 InSAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(7): 1620-1628, DOI: 10.1109/TGRS.2003.813271.
  • 13.Bargiel, D., Herrmann, S., 2011. Multi-temporal land-cover classification of agricultural areas in two European regions with high resolution spotlight TerraSAR-X data. Remote sensing,. 3(5): 859-877, https://doi.org/10.3390/rs3050859.
  • 14.Bouvet, A., Le Toan, T., 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sensing of Environment, 115(4): 1090-1101, https://doi.org/10.1016/j.rse.2010.12.014.
  • 15.Braun, A., Hochschild V., 2017.Potential and limitations of radar remote sensing for humanitarian operations. in GI Forum, DOI: 10.1553/giscience2017_01_s228.
  • 16.Ajadi, O.A., Meyer, F.J., Webley, P.W., 2016. Change detection in synthetic aperture radar images using a multiscale-driven approach. Remote Sensing, 8(6): 482, https://doi.org/10.3390/rs8060482.
  • 17.Longépé, N., et al., Assessment of ALOS PALSAR 50 m orthorectified FBD data for regional land cover classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 2011. 49(6): 2135-2150, DOI: 10.1109/TGRS.2010.2102041.
  • 18.Niu, X., Ban, Y., 2013. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International journal of remote sensing, 34(1): 1-26, https://doi.org/10.1080/01431161.2012.700133.
  • 19.Balzter, H., Cole, B., Thiel, C., Schmullius, C., 2015. Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sensing, 7(11): 14876-14898. https://doi.org/10.3390/rs71114876.
  • 20.Ghanbari, M., Akbari, V., 2018. Unsupervised change detection in polarimetric SAR data with the Hotelling-Lawley trace statistic and minimum-error thresholding. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12): 4551-4562, DOI: 10.1109/JSTARS.2018.2882412.
  • 21.Inglada, J., Mercier, G., 2007. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE transactions on geoscience and remote sensing, 45(5): 1432-1445, DOI: 10.1109/TGRS.2007.893568.
  • 22.Bouyahia, Z., Youssef, L.B., Derrode, S., 2008. Change detection in synthetic aperture radar images with a sliding hidden Markov chain model. Journal of Applied Remote Sensing, 2(1): 023526, https://doi.org/10.1117/1.2957968.
  • 23.Gong, M., Cao, Y., Wu, Q., 2011. A neighborhood-based ratio approach for change detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 9(2): 307-311, DOI: 10.1109/LGRS.2011.2167211.
  • 24.Liu, M., Zhang, H., Wang, C., Shan, Z., 2012. Urban change detection for high-resolution fully polarimetric SAR using a modified heterogeneous clutter model. in EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. VDE.
  • 23.Gong, M., Zhao, J., Liu, J., Miao, Q., Jiao, L., 2015. Change detection in synthetic aperture radar images based on deep neural networks. IEEE transactions on neural networks and learning systems, 27(1): 125-138, DOI: 10.1109/TNNLS.2015.2435783
  • 25.Nicolau, A.P., Flores-Anderson, A., Griffin, R., Herndon, K., & Meyer, F. J., 2021. Assessing SAR Cband data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. International Journal of Applied Earth Observation and Geoinformation, 94: 102214, https://doi.org/10.1016/j.jag.2020.102214
  • 26.Breiman, L., Random forests. Machine learning, 2001. 45(1): 5-32.
  • 27.Efron, B., Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1): 1-26. URL http://www. jstor. org/stable/2958830, 1979.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-292d3527-8aa5-4282-8476-f0550f91bedb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.