Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ultra-High Molecular Weight Polyethylene (UHMWPE) polymers have been used in biomedical applications due to its biocompatibility, durability, toughness and high wear resistance. To enhance the mechanical properties, various types of minerals are commonly utilized as fillers in UHMWPE. One of the minerals is dolomite, which has been recognized as a valuable mineral with versatile applications, particularly in the field of biomedical applications. This paper presents the tensile properties of UHMWPE composites that filled with dolomite and treated-dolomite at various filler loading (i.e., 1-5 wt.%). Nitric acid and diammonium phosphate were used to treat the dolomite. From the results, the peaks of the FTIR spectrum displays carbonate (CO3-2), phosphate (PO4-3) and hydroxyl (OH-) groups in the ct-dolomite powder sample while the XRD pattern reveals that using dolomite treated with 1M nitric acid resulted in the presence of calcium hydroxide phosphate (Ca10(PO4)5(OH)) and MgO. For tensile strength, UHMWPE/ct-dolomite composites show better tensile strength than the pure UHMWPE composites. Treated improve the dolomite filler and resulted in significantly better matrix-filler interfacial interactions and improve the properties.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
281--288
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
- Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
- University Malaysia Perlis, Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoTech), 01000 Kangar, Perlis, Malaysia
autor
- Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
- University Malaysia Perlis, Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoTech), 01000 Kangar, Perlis, Malaysia
autor
- Universiti Malaysia Perlis, Medical Device and Life Science Cluster, Sport Engineering Research Centre, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
- Universiti Malaysia Perlis, Faculty of Electronic Engineering &Technology, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
- Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
- University Malaysia Perlis, Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoTech), 01000 Kangar, Perlis, Malaysia
autor
- Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
autor
- Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
autor
- Nanyang Technological University, School of Materials Science & Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
autor
- Ahmadu Bello University, Faculty of Engineering, Department of Polymer and Textile Engineering, Zaria, Nigeria
autor
- Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
- [1] I. Id, Applications of Polymers in the Biomedical Field. Current Trends in Biomedical Engineering & Biosciences 4 (5), (2017). DOI: https://doi.org/10.19080/ctbeb.2017.04.555650
- [2] K. Chong, A.F. Osman, A.A. Ahmad Fauzi, A.A. Alrashdi, K.A. Abdul Halim, The Mechanical and Thermal Properties of Poly(ethylene-co-vinyl acetate) (PECoVA) Composites with Pristine Dolomite and Organophilic Microcrystalline Dolomite (OMCD). Polymers (Basel) 13 (18) (2021). DOI: https://doi.org/10.3390/polym13183034
- [3] M.Hussain, R.A. Naqvi, N. Abbas, S.M. Khan, S. Nawaz, A. Hussain, N. Zahra, M.W. Khalid, Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers (Basel), 12 (2) (2020). DOI: https://doi.org/.3390/polym12020323
- [4] D.L.P. Macuvele, J. Nones, J.V. Matsinhe, M.M. Lima, C. Soares, M.A. Fiori, H.G. Riella, Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Mater. Sci. Eng. C Mater. Biol. Appl. 76, 1248-1262 (2017). DOI: https://doi.org/10.1016/j.msec.2017.02.070
- [5] D. Mandrino, I. Paulin, M.M. Kržmanc, S.D. Škapin, Physical and chemical treatments influence on the thermal decomposition of a dolomite used as a foaming agent. Journal of Thermal Analysis and Calorimetry 131 (2), 1125-1134 (2017). DOI: https://doi.org/10.1007/s10973-017-6699-0
- [6] A.O.A. Ajayi, O.O. Imosili, Characterization and evaluation of mechanical properties of dolomite as filler in polyester. Chemistry and Materials Research 3 (8) (2013).
- [7] M.V. Nikolenko, K.V. Vasylenko, V.D. Myrhorodska, A. Kostyniuk, B. Likozar, Synthesis of Calcium orthophosphates by Chemical Precipitation in Aqueous Solutions: The Effect of the Acidity, Ca/P Molar Ratio, and Temperature on the Phase Composition and Solubility of Precipitates. Processes 8 (9) (2020). DOI: https://doi.org/10.3390/pr8091009
- [8] A.I. Hakem, Al B.A. Mohd Mustafa, S.M.A.A. Mohd, Y. Sorachon, R.R. Abd, M. Rosnita, B.M. Simona, The Investigation of Ground Granulated Blast Furnace Slag Geopolymer at High Temperature by Using Electron Backscatter Diffraction Analysis. Archives of Metallurgy and Materials 67 (1), (2022). DOI: https://doi.org/10.24425/amm.2022.137494
- [9] Mohd Pu’ad, N.A.S., R.H. Abdul Haq, H. Mohd Noh, H.Z. Abdullah, M.I. Idris, T.C. Lee, Synthesis method of hydroxyapatite: A review. Materials Today: Proceedings (2020). DOI: https://doi.org/10.1016/j.matpr.2020.05.536
- [10] G. Ma, Three common preparation methods of hydroxyapatite, in IOP Conference Series: Materials Science and Engineering (2019).
- [11] H. Ait Said, H. Mabroum, M. Lahcini, H. Oudadesse, A. Barroug, H. Ben Youcef, H. Noukrati, Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: A review. Int. J. Biol. Macromol. 243, (2023). DOI: https://doi.org/10.1016/j.ijbiomac.2023.125150
- [12] A. Zima, Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 193, 175-184 (2018).
- [13] S.E. Cahyaningrum, Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method. International Conference on Chemistry and Material Science (IC2MS) (2017).
- [14] S. Santhosh, S. Balasivanandha Prabu, Thermal stability of nano hydroxyapatite synthesized from sea shells through wet chemical synthesis. Materials Letters 97, (2013). DOI: https://doi.org/10.1016/j.matlet.2013.01.081
- [15] N. Jamarun, Z. Azharman, Z. Zilfa, U. Septiani, Effect of Firing for Synthesis of Hydroxyapatite by Precipitation Method. Oriental Journal of Chemistry 32 (4), (2016). DOI: https://doi.org/10.13005/ojc/320437
- [16] Z. Amjad, Calcium phosphates in biological and industrial systems. 1998: Kluwer Academic Publishers.
- [17] J. Zhou, J. Luo, J. Chen, W. Li, Z. Huang, C. Chen, H. Gong, Temperature Effect on Hydroxyapatite Preparation by Co-precipitation Method under Carbamide Influence. MATEC Web of Conferences 26 (2015). DOI: https://doi.org/10.1051/matecconf/20152601007
- [18] T.T.T. Pham, T.P. Nguyen, T.N. Pham, T.P. Vu, D.L. Tran, H. Thai, T.M.T. Dinh, Impact of physical and chemical parameters on the HA nanopowder synthesised by chemical precipitation method. Advances in Natural Sciences: Nanosciences and Nanotechnology 4 (2013).
- [19] D. Laurencin, N. Almora-Barrios, N.H. De Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J.C. Knowles, R.J. Newport, A. Wong, Z. Gan, M.E. Smith, Magnesium incorporation into hydroxyapatite. Biomaterials 32 (7) (2011). DOI: https://doi.org/10.1016/j.biomaterials.2010.11.017
- [20] V.S. Bystrov, E.V. Paramonova, L.A. Avakyan, N.V. Eremina, S.V. Makarova, N.V. Bulina, Effect of Magnesium Substitution on Structural Features and Properties of Hydroxyapatite. Materials (Basel) 16 (2023). DOI: https://doi.org/10.3390/ma16175945
- [21] N.A.S. Mohd Pu’ad, J. Alipal, H.Z. Abdullah, M.I. Idris, T.C. Lee, Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method. Materials Today: Proceedings 42, (2021). DOI: https://doi.org/10.1016/j.matpr.2020.11.276
- [22] A. Farzadi, F. Bakhshi, M. Solati-Hashjin, M. Asadi-Eydivand, N.A. Osman, Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceramics International 40 (2014). DOI: https://doi.org/10.1016/j.ceramint.2013.11.051
- [23] A. Simon, D. Lipusz, P. Baumli, P. Balint, G. Kaptay, G. Gergely, A. Sfikas, A. Lekatou, A. Karantzalis, Z. Gacsi, Microstructure and Mechanical Properties of Al-WC Composites. Archives of Metallurgy and Materials 60 (2015). DOI: https://doi.org/10.1515/amm-2015-0164
- [24] G. Wypych, Physical properties of fillers and filled material, in handbook of Fillers - A definitive User’s Guide and Databook. 2016.
- [25] N. Jamarun, Synthesis of Hydroxyapatite from Halaban Limestone by Sol-Gel Method. Research Journal of Pharmaceutical, Biological and Chemical Sciences 5, (2016).
- [26] B.P. Chang, H.M. Akil, R.M. Nasir, S. Nurdijati, Mechanical and Antibacterial Properties of Treated and Untreated Zinc Oxide filled UHMWPE Composites. Journal of Thermoplastic Composite Materials 24 (2011). DOI: https://doi.org/10.1177/0892705711399848
- [27] Y.B. Apriliyanto, S. Sugiarti, S.G. Sukaryo, Enhancing Thermal and Mechanical Properties of UHMWPE/HA Composite as Tibial Tray. Indonesian Journal of Chemistry 20 (2020). DOI: https://doi.org/10.22146/ijc.44086
- [28] J.K. Oleiwi, I.F. Gh., F. Othman, A study of mechanical properties of poly methacrylate polymer reinforced by silica particles (SiO2). Engineering & Technology Journal 31 (2013).
- [29] K.L.K. Lai, Z.A.M. Ishak, U.S. Ishiaku, Effect of Polyethylene and Polyethylene Blend Reinforced by Hydroxyapatite. Journal of Applied Polymer Science.
Uwagi
The authors of the present work wish to acknowledge the funding by Fundamental Research Grant Scheme (FRGS) (Grant no.: FRGS/1/2019/TK05/ UNIMAP/02/8) sponsored by Malaysian Ministry of Higher Education (MOHE). Special thanks to those who contributed to this project directly or indirectly.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29253a69-294b-4412-95fb-25d70bc8ef79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.