PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we study the Fekete-Szegö functional associated with a new class of analytic functions related to the class of bounded turning by using the principle of quasi-subordination. We derived the coefficient estimates including the classical Fekete-Szegö inequality for functions belonging to this class. We also improved some existing results.
Wydawca
Rocznik
Strony
art. no. 20220232
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
  • Department of Mathematics, Faculty of Science, The Hashemite University, P.O Box 330127, Zarqa 13133, Jordan
  • Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
  • Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
  • Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
  • Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
  • Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
Bibliografia
  • [1] M. S. Robertson, Quasi subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1–9.
  • [2] T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34 (1967), 95–102.
  • [3] S. Owa, T. Sekine, and R. Yamakawa, On Sakaguchi-type functions, Appl. Math. Comput. 187 (2007), 356–361.
  • [4] M. Obradovic, A class of univalent functions, Hokkaido Math. J. 2 (1988), 329–335.
  • [5] P. Sharma and R. K. Raina, On a Sakaguchi-type class of univalent functions associated with quasi-subordination, Comment. Math. Univ. St. Paul 64 (2015),59–70.
  • [6] H. M. Srivastava, S. Hussain, A. Raziq, and M. Raza, The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math. 34 (2018), 103–113.
  • [7] M. Nunokawa, M. Obradovic, and S. Owa, One criterion for univalency, Proc. Amer. Math. Soc. 106 (1989), 1035–1037.
  • [8] K.S. Charak and S. Sharma, Value distribution and normality of meromorphic functions involving partial sharing of small functions, Turk. J. Math. 41 (2017), 404–411.
  • [9] S. G. A. Shah, S. Hussain, A. Rasheed, Z. Shareef, and M. Darus, Application of quasi subordination to certain classes of meromorphic functions, J. Funct. Spaces 2020 (2020), Article ID 4581926.
  • [10] S. Mahmood, H. M. Srivastava, and S. N. Malik, Some subclasses of uniformly univalent functions with respect to symmetric points, Symmetry 11 (2019), 287.
  • [11] V. Ravichandran, A. Naz, and S. Nagpal, Star-likeness associated with the exponential function, Turk. J. Math. 43 (2019), 1353–1371.
  • [12] S. G. A. Shah, S. Noor, M. Darus, W. UlHaq, and S. Hussain, On meromorphic functions defined by a new class of liusrivastava integral operator, Int. J. Anal. Appl. 18 (2020), no. 6, 1056–1065.
  • [13] S. Porwal and S. Bulut, Radii problem of certain subclasses of analytic functions with fixed second coefficients, Honam Math. J. 37 (2015), 317–323.
  • [14] M. Fekete and G. Szegö, Eine Bemerkung, Uber ungrade schlichet funktionen, J. Math. Soc. 8 (1933), 85–89.
  • [15] B. Deng, D. Liu, and D. Yang, Meromorphic function and its difference operator share two sets with weight k, Turk. J. Math. 41 (2017), 1155–1163.
  • [16] Y. Polatoglu and H. E. Ozkan, Growth and distortion theorems for multivalent Janowski close-to-convex harmonic functions with shear construction method, Turk. J. Math. 37 (2013), 437–444.
  • [17] A. Naik, T. Panigrahi, and G. Murugusundaramoorthy, Coefficient estimate for class of meromorphic Bi-BazileviČ type functions associated with linear operator defined by convolution, Jordan J. Math. Stat. 14 (2021), no. 2, 287–305.
  • [18] S. G. A. Shah, S. Noor, S. Hussain, A. Tasleem, A. Rasheed, and M. Darus, Analytic functions related with starlikeness, Mathematical Problems in Engineering 2021 (2021), Article ID 9924434.
  • [19] G. Murugusundaramoorthy and H. Dutta, Fekete-Szegö inequality and application of Poisson distribution series for some subclasses of analytic functions related with Bessel functions, Appl. Math. Info. Sci. 16 (2022), no. 2, 305–313.
  • [20] A. Rasheed, S. Hussain, S. G. A. Shah, M. Darus, and S. Lodhi, Majorization problem for two subclasses of meromorphic functions associated with a convolution operator, AIMS Mathematics 5 (2020), no. 5, 5157–5170.
  • [21] M. Çağlar, G. Palpandy, and H. Orhan, The coefficient estimates for a class defined by Hohlov operator using conic domains, TWMS J. Pure Appl. Math. 11 (2020), no. 2, 157–172.
  • [22] M. Çağlar and H. Orhan, Fekete-Szegö problem for certain subclasses of analytic functions defined by the combination of differential operators. Bol. Soc. Mat. Mex. 27 (2021), no. 41, 1–12.
  • [23] S. P. Goyal and P. Goswami, Certain coefficient in equalities for Sakaguchi-type functions and applications to fractional derivatives operator, Acta Univ. Apulensis 19 (2009), 159–166
  • [24] M. H. Mohd. and M. Darus, Fekete-Szegö problems for quasi-subordination classes, Abstr. Appl. Anal. 2012 (2012),1–14, Article ID 192956.
  • [25] A. Motamednezhad and S. Salehian, New subclass of bi-univalent functions by pq ( J. 41 (2019), no. 2, 381–390. , )-derivative operator, Honam Math.
  • [26] V. Ravichandran, A. Gangadharen, and M. Darus, Fekete-Szegö inequality for certain class of Bazelevic functions, Far East J. Math. Sci. 15 (2004), 171–180.
  • [27] V. Ravichandran, M. Darus, M. H. Khan, and K. G. Subramanian, Fekete-Szegö inequality for certain class of analytic functions, Austral. J. Math. Anal. Appl. 4 (2004), no. 1, 1–7.
  • [28] V. Ravichandran, M. Bokal, Y. Polotoglu, and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacetlepe J. Math. Stat. 34 (2005), 9–15.
  • [29] K. Sakaguchi, On a certain univalent mapping, Math. J. Soc. Japan 11 (1959), 72–75.
  • [30] T. N. Shanmugham and S. Sivasubramanian, On the Fekete-Szegö problem for some subclasses of analytic functions, J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Art 71, 6 pages.
  • [31] T. N. Shanmugham, C.Ramachandran, and V. Ravichandran, Fekete-Szegö problem for subclasses of starlike function with respect to symmetric points, Bull. Korean Math. Soc. 43 (2006), no. 3, 589–598.
  • [32] T. N. Shanmugham, S. Sivasubramanian, and M. Darus, Fekete-Szegö inequality for certain classes of analytic functions, Mathematica 34 (2007), 29–34.
  • [33] H. M. Srivastava, A. K. Mishra, and M. K. Das, The Fekete-Szegö problem for a subclass of class-to-convex functions, Complex Variables Theory Appl. 44 (2001), 145–163.
  • [34] H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japan 29 (1984), 383–389.
  • [35] N. Tuneski and M. Darus, Fekete-Szegö functional for non-Bazilevic functions, Acta. Math. Acad. Paedagog. Nyhazi. (N. S) 18 (2002), no. 2, 63–65.
  • [36] K. T. Wiecław, P. Zaprawa, M. Gregorczyk, and A. Rysak, On the Fekete-Szegö type functionals for close-to-convex func tions, Symmetry 11 (2019), no. 12, 1497.
  • [37] F. R. Keogh and E. P. Merkers, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
  • [38] Z. Nehari, Conformal Mapping, McGraw-Hill Book Company, New York, 1952.
  • [39] H. Arikan, M. Çağlar, and H. Orhan, Fekete-Szego problem for subclasses of analytic functions associated with quasi subordination, Bull. Transilv. Univ.Braşov Ser. III Math. Inform. Phys. 12 (2019), no. 2, 221–232.
  • [40] H. Orhan, E. Deniz, and M. Çağlar, Fekete Szegö problem for certain subclasses of analytic functions, Demonstr. Math. 45 (2012), no. 4, 835–846.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2924e4ee-6d26-48a9-8144-ba4fb6511137
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.