PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation to investigate the influence of welding sequences and boundary conditions on the mechanical behaviour of gusset joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Welding is one of the most widely used joining processes for the fabrication of steel parts. Consequently, it is commonly used in the shipbuilding industry for the fabrication of structural T-stiffeners. However, this process introduces inherent imperfections, such as angular deformation and residual stresses, which can affect structural stability and shorten the lifespan of the parts. This study conducts a literature review to replicate numerical analyses from reference studies, validating the proposed simulation methodology by comparing numerical and experimental thermo-mechanical results. A finite element model is created using MSC Patran and the welding process is simulated with Simufact Welding. Once the methodology is validated, a case study is conducted in which the shielded metal arc welding (SMAW) process is simulated using a simultaneously coupled thermo-elasto-plastic analysis, based on the finite element method. The study aims to determine the influence of welding sequences and mechanical boundary conditions on angular deformation and longitudinal residual stresses in the T-joints of narrow and thin plates made of S355J2 structural steel. These plates are used as structural stiffeners in the stern and bow sections of patrol boats. The goal is to propose an optimal welding sequence and boundary condition configuration that mitigates angular distortion and longitudinal residual stresses in the structural members. The proposed welding sequence consists of four weld lines running from the middle of the plate to the end, whilst the mechanical boundary condition supports the plate along the longitudinal ends.
Rocznik
Tom
Strony
163--170
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • School of Mechanical, Technological University of Panama, Panama City, Panama
autor
  • School of Mechanical, Technological University of Panama, Panama City, Panama
  • Research and Innovation Center for Education, Science, and Technology (CIIECYT), Specialized Superior Technical Institute (ITSE), Panama City, Panama
autor
  • School of Mechanical, Technological University of Panama, Panama City, Panama
Bibliografia
  • 1. Ueda Y, Murakawa H, Ma N. Welding Deformation and Residual Stress Prevention, Vol. 1. Elsevier; 2012. doi: https://doi.org/10.1016/B978-0-12-394804-5.00001-3.
  • 2. American Welding Society, Welding manual, 8th ed., Vol. 2. Prentice Hall; 1996.
  • 3. Fu G, Lourenco MI, Duan M, Estefen SF. Influence of the welding sequence on residual stress and distortion of fillet welded structures. Marine Structures, Vol. 46, 2016, pp. 30–55. doi: https://doi.org/10.1016/j.marstruc.2015.12.001.
  • 4. Fu G, Lourenco MI, Duan M, Estefen SF. Effect of boundary conditions on residual stress and distortion in T-joint welds. J Constr Steel Res., Vol. 102, 2014, pp. 121–135. doi: https://doi.org/10.1016/j.jcsr.2014.07.008.
  • 5. Kik T. Computational techniques in numerical simulations of arc and laser welding processes. Materials, Vol. 13, no. 3, Feb. 2020. doi: https://doi.org/10.3390/ma13030608.
  • 6. Das Banik S, Kumar S, Singh PK, Bhattacharya S, Mahapatra mm. Distortion and residual stresses in thick plate weld joint of austenitic stainless steel: Experiments and analysis. J Mater Process Technol, Vol. 289, Mar. 2021. doi: https://doi.org/10.1016/j.jmatprotec.2020.116944.
  • 7. Chen BQ, Guedes Soares C. Effect of welding sequence on temperature distribution, distortions, and residual stress on stiffened plates. International Journal of Advanced Manufacturing Technology, Vol. 86, no. 9–12, 2016, pp. 3145–3156. doi: https://doi.org/10.1007/s00170-016-8448-0.
  • 8. Bai R, Guo Z, Tian C, Lei Z, Yan C, Tao W. Study on welding sequence of butt-welded structures based on equivalent heat source parameter. International Journal of Pressure Vessels and Piping, Vol. 163, 2018, pp. 15–22. doi: https://doi.org/10.1016/j.ijpvp.2018.04.001.
  • 9. Jafarpur K, Nami MR. Analysis of welding conditions based on induced thermal irreversibilities in welded structures: Cases of welding sequences and preheating treatment. Scientia Iranica, Vol. 18, no. 3, 2011, pp. 398–406. doi: https://doi.org/10.1016/j.scient.2011.05.030.
  • 10. Gannon L, Liu Y, Pegg N, Smith M. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates. Marine Structures, Vol. 23, no. 3, 2010, pp. 385–404. doi: https://doi.org/10.1016/j.marstruc.2010.05.002.
  • 11. Fanous IFZ, Younan MYA, Wifi AS. Study of the Effect of Boundary Conditions on Residual Stresses in Welding Using Element Birth and Element Movement Techniques. Journal of Pressure Vessel Technology, Transactions of the ASME, Vol. 125, no. 4, Nov. 2003, pp. 432–439. doi: https://doi.org/10.1115/1.1613952.
  • 12. Zhang Y, Wang Y. The influence of welding mechanical boundary condition on the residual stress and distortion of a stiffenedpanel. Marine Structures, Vol. 65, May 2019, pp. 259–270. doi: https://doi.org/10.1016/j.marstruc.2019.02.007.
  • 13. Deng D, Liu X, He J, Liang W. Investigating the influence of external restraint on welding distortion in thin-plate bead-on joint by means of numerical simulation and experiment. International Journal of Advanced Manufacturing Technology, Vol. 82, no. 5–8, Feb. 2016, pp. 1049–1062. doi: https://doi.org/10.1007/s00170-015-7413-7.
  • 14. Aalami-Aleagha ME, Eslampanah AH. Mechanical constraint effect on residual stress and distortion in T-fillet welds by threedimensional finite element analysis. Proc Inst Mech Eng B J Eng Manuf., Vol. 227, no. 2, Feb. 2013, pp. 315–323. doi: https://doi.org/10.1177/0954405412466781.
  • 15. Kozak J. Prediction of Weld Deformations by Numerical Methods-Review. Polish Maritime Research, Vol. 29, no. 1, Mar. 2022, pp. 97–107. doi: https://doi.org/10.2478/pomr-2022-0010.
  • 16. Deng D, Liang W, Murakawa H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements. J Mater Process Technol, Vol. 183, no. 2–3, Mar. 2007, pp. 219–225. doi: https://doi.org/10.1016/j.jmatprotec.2006.10.013.
  • 17. Blandon J, Takaba S, Omae T, Osawa N, Murakawa H. Optimisation of Forming Process of a U-rib by Gas Heating Based on Theoretical Prediction. CMES, Vol. 106, no. 1, 2015, pp. 53–75. doi: https://doi.org/10.3970/cmes.2015.106.053.
  • 18. Pacheco JL, Olmos M. Modelling of Thermal Cycling During Electric Arc Welding of Dissimilar Joints of Stainless Steels Using a Theoretical-Experimental Approach. Revista de la Facultad de Ingenieria, Vol. 30, no. 3, Jul. 2015, pp. 111–118. [Online]. Available: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652015000300011&lng=es&nrm=iso.
  • 19. Hughes TJR. Formulation of Two and Three-Dimensional Boundary Value Problems. In: The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Ed., Courier Corporation, ch. 2; 2003, pp. 57–107.
  • 20. Hexagon AB. Marc Theory and user information. 2023, Hexagon AB.
  • 21. Hexagon AB. Simufact Welding reference manual. 2024, Hexagon AB.
  • 22. Hexagon AB. MSC Patran Reference Manual. 2024, Hexagon AB.
  • 23. Li H, Liu S, Ma Q, Wang P, Liu D, Zhu Q. Investigation of Process Stability and Weld Quality of Underwater Wet Flux-Cored Arc Welding of Low-Alloy High-Strength Steel with Oxy-Rutile Wire. Polish Maritime Research, Vol. 28, no. 3, Sep. 2021, pp. 100–109. doi: https://doi.org/10.2478/pomr-2021-0037.
  • 24. Deng D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater Des., Vol. 30, no. 2, Feb. 2009; pp. 359–366. doi: https://doi.org/10.1016/j.matdes.2008.04.052.
  • 25. Goldak J, Chakravarti A, Bibby M. A New Finite Element Model for Welding Heat Sources. Metallurgical Transactions, Vol. 15, no. B, Jun. 1984, pp. 299–305. doi: https://doi.org/10.1007/BF02667333.
  • 26. Urbański T, Banaszek A, Jurczak W. Prediction of Welding-Induced Distortion of Fixed Plate Edge Using Design of Experiment Approach. Polish Maritime Research, Vol. 27, no. 1, Mar. 2020, pp. 134–142. doi: https://doi.org/10.2478/pomr-2020-0014.
  • 27. Bureau Veritas. Rules for the Classification of Steel Ships: Part B Hull and Stability. 2022. [Online]. Available: https://marineoffshore.bureauveritas.com/.
  • 28. Li Z, Feng G, Deng D, Luo Y. Investigating Welding Distortion of Thin-Plate Stiffened Panel Steel Structures by Means of Thermal Elastic Plastic Finite Element Method. J Mater Eng Perform., Vol. 30, no. 5, May 2021, pp. 3677–3690. doi: https://doi.org/10.1007/s11665-021-05646-y.
  • 29. Perić M, Nižetić S, Garašić I, Gubeljak N, Vuherer T, Tonković Z. Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thickwalled T-joint structure. J Therm Anal Calorim., Vol. 141, no. 1, Jan. 2020, pp. 313–322. doi: https://doi.org/10.1007/s10973-019-09231-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-291ccb87-d476-4fcb-ab97-cc5638c9ef2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.