PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic characteristics of the structure with viscoelastic dampers combined with inerters and subjected to temperature changes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the work is dynamic analysis of passive dampers used in structural systems to reduce excessive vibrations caused by wind or earthquakes. Special systems are considered that contain inerter, i.e. device using rotational inertia, in combination with a viscoelastic damper. The so-called fractional models of viscoelastic dampers describe their dynamic behavior in a wide frequency range using a small number of model parameters. To describe material behavior over a wider frequency range, the time-temperature superposition principle is used. The shifting factor is calculated from the well-known William-Landel-Ferry formula. This allows for determination of damper parameters at any temperature based on the parameters obtained at the reference temperature. Laplace transformation of the derived equations of motion leads to the non-linear eigenproblem, which could be solved using the continuation method. The influence of temperature on the dynamic characteristics of the system is examined.
Rocznik
Strony
art. no. 2020222
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
  • Poznań University of Technology, ul. Piotrowo 5, 60-965 Poznań, Poland
  • Poznań University of Technology, ul. Piotrowo 5, 60-965 Poznań, Poland
Bibliografia
  • 1. M.C. Smith. Synthesis of mechanical networks: the inerter. IEEE Trans Automat Contr. 2002, 47(10), 1648-62.
  • 2. R.M. Hessabi, O. Mercan, Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures. Engineering Structures, 2016, 126, 174-186.
  • 3. P. Brzeski, M. Lazarek, P. Perlikowski, Experimental study of the novel tuned mass damper with inerter which enables changes of inertance. Journal of Sound and Vibration. 2017, 404, 47-57. https://doi.org/10.1016/j.jsv.2017.05.034
  • 4. F.-C. Wang, M.-F. Hong and T.-C. Lin, Designing and testing a hydraulic inerter, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., 2011, vol. 225, no. 1, pp. 66-72.
  • 5. N. Makris, G. Kampas, Seismic protection of structures with supplemental rotational inertia, J Eng Mech., 2016;142(11). 04016089-1-11
  • 6. M. Wang, F. Sun, Displacement reduction effect and simplified evaluation method for SDOF systems using a clutching inerter damper. Earthq. Eng. Struct. Dynam. 2018, 47(7): 1651-72
  • 7. D, De Domenico, G, Ricciardi, R. Zhang, Optimal design and seismic performance of tuned fluid inerter applied to structures with friction pendulum isolators, Soil Dynamics Earthquake Engineering, 132, (2020), 106099
  • 8. D, Pietrosanti, M. De Angelis, M. Basili, Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI). Earthq Eng Struct Dynam 2017; 46(8): 1367-88.
  • 9. D. De Domenico, P. Deastra, G. Ricciardi, N.D. Sims, D.J. Wagg. Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings. J. Franklin Inst. 2019, 356(14), 7626-49.
  • 10. A. Radu, I.F. Lazar, S.A. Neild. Performance-based seismic design of tuned-inerter dampers. Structural Control and Health Monitoring, 2019, 26(5), [e2346]. DOI: 10.1002/stc.2346
  • 11. M.Z.Q, Chen, Y, Hu, L. Huang, G. Chen, Influence of inerter on natural frequencies of vibration systems. Journal of Sound and Vibration, 2014, 333, 1874-1887.
  • 12. Y, Hu, M.Z.Q. Chen, M.C. Smith, Natural frequency assignment for mass-chain systems with ierters, Mechanical Systems and Signal Processing, 2018, 108. 126-139. DOI: 10.1016/j.ymssp.2018.01.038
  • 13. K.C. Chang, T.T. Soong, S.-T. Oh, M.L. Lai, Effect of ambient temperature on viscoelastically damped structure. J. Struct. Eng. 1992, 118(7), 1955-1973.
  • 14. R. Lewandowski, A. Bartkowiak and H. Maciejewski, Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models, Structural Engineering and Mechanics, 2012, 41(1), 113-137.
  • 15. L. Rouleau, J.-F. Deu, A. Legay, F. Le Lay, Application of Kramers-Kronig relations to time-temperature superposition for viscoelastic materials. Mech. Mater. 2013, 65, 66-75. https://doi.org/10.1016/j.mechmat.2013.06.001.
  • 16. R. Lewandowski, M. Przychodzki, Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers. Arch Appl Mech 88, 2018, 1695-1711. https://doi.org/10.1007/s00419-018-1394-6
  • 17. Z. Pawlak, R. Lewandowski, The continuation method for the eigenvalue problem of structures with viscoelastic damper. Computer and Structures, 2013, 125: 53-61.
  • 18. R.A.S. Moreira, J.D. Corte-Real, J. Dias Rodrigues, A generalized frequency-temperature viscoelastic model. Shock Vib. 17 (2010), 407-418.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-291b1156-0c31-4b51-b292-84a45ced362c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.