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Abstract 

The purpose of the work is dynamic analysis of passive dampers used in structural systems to reduce 
excessive vibrations caused by wind or earthquakes. Special systems are considered that contain inerter,  

i.e. device using rotational inertia, in combination with a viscoelastic damper. The so-called fractional models 

of viscoelastic dampers describe their dynamic behavior in a wide frequency range using a small number  
of model parameters. To describe material behavior over a wider frequency range, the time-temperature 

superposition principle is used. The shifting factor is calculated from the well-known William-Landel-Ferry 

formula. This allows for determination of damper parameters at any temperature based on the parameters 
obtained at the reference temperature. Laplace transformation of the derived equations of motion leads to the 

non-linear eigenproblem, which could be solved using the continuation method. The influence of temperature 

on the dynamic characteristics of the system is examined. 

 

Keywords: Viscoelastic damper, inerter, temperature, fractional derivative, nonlinear eigenvalue problem 
 

1. Introduction 

One of the latest ideas to reduce excessive vibration is to use an inerter, i.e. a device 

capable of generating large inertia forces counteracting excitation forces. For the first 

time the concept of inerter was proposed by Smith [1]. In general, the inerter can have  

a different operating mechanism, e.g. gear system [2], screw mechanisms [3] or 

hydraulic device [4], which strengthens the rotational inertia and generates the resulting 

resistance force, which is proportional to the relative acceleration at the end terminals of 

the device. 

The dynamic behavior of inerers with a rack and a ball screw is successfully 

described by a simple linear equation [5, 6]. In the case of hydraulic inerters, the linear 

description is inaccurate. One of the proposals for taking into account the non-linear 

damping effects is a model in which the non-linear damper is connected in parallel with 

the inerter [7]. 

 In many cases, inerter is a part of passive damping system, e.g. it is used in combination 

with a tuned mass damper to improve the efficiency of the entire control system [8, 9]. 

Much research has been devoted to the optimal design of damping systems consisting of 

inerters, where various optimization and design strategies are proposed [7, 8, 9, 10]. 

However, there is little research analyzing the influence of the inerter on the dynamic 

characteristics of structures with embedded passive damping systems [11, 12]. The 

purpose of this work is to investigate the impact of various passive damping systems 

composed of viscoelastic (VE) dampers and inerters on the dynamic characteristics of 

the system under consideration, including the effect of temperature. An important feature 
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of viscoelastic materials used in dampers (polymers) is that their damping properties 

depend on the temperature and frequency of vibrations. Studies on the impact of 

temperature on the efficiency of viscoelastic dampers installed in building structures are 

given in [13]. To describe the dynamic behaviour of the viscoelastic element, classical 

and fractional models are used. Fractional models describe well the dynamic behaviour 

of the damper with a small number of parameters necessary for identification [14]. 

Model parameters can be identified in experimental tests by determining the values of 

the complex modulus and creating the so-called master curves of its real part (storage 

modulus) and its imaginary part (loss modulus). The values of the complex module for 

other temperatures can be obtained by shifting the master curves [15], which is 

associated with a change in model parameters and may result in the need for re-

identification of them. Similarly as in work [16], the influence of temperature on the 

dynamic properties of viscoelastic material was taken into account by changing the 

values of its model parameters. The dynamic characteristics of the system with 

viscoelastic dampers and inerters for different temperatures were determined after 

solving a properly formulated eigenvalue problem. Some observations regarding the 

influence of temperature on the damping properties of the considered systems were made 

on the basis of selected numerical examples. 

 

2. Structure with VE dampers and inerters 

The dynamic properties of the structure are analyzed, in which viscoelastic dampers and 

inerters are used in various configurations. To describe the dynamic behavior of the 

viscoelastic element, fractional models were used in which the Scott-Blair element 

described by derivatives of non-integer order are applied. In mechanical models of 

dampers, the Scott-Blairs element is marked with the rhombus symbol (Fig. 1), and 

described by two parameters: 𝑐0 and ∝. The constitutive equation is: 

𝑈𝑑(𝑡) = 𝑐0𝐷𝑡
𝛼∆𝑞(𝑡), (1) 

where, 𝑈𝑑(𝑡) is a force acting at damper node, 𝑐0 the damping parameter, ∆𝑞(𝑡) is the 

relative nodal displacement, i.e. ∆𝑞(𝑡) = 𝑞𝑗(𝑡) − 𝑞𝑖(𝑡) and 𝐷𝑡
𝛼(∗) is the Riemann-

Liouville derivative of the non integer order (0 <∝≤ 1) with respect to time 𝑡. 

The fractional viscous model or fractional Kelvin model in various configurations with 

inerter were used for the analysis. Inerter, regardless of the construction, generates a 

resistance force that is proportional to the relative acceleration at the terminal ends of the 

device  

𝑈𝑏(𝑡) = 𝑏1𝐷𝑡
2∆𝑞(𝑡) ≡ 𝑏1∆𝑞̈(𝑡), (2) 

where, 𝑏1 is the equivalent mass of the inerter, which, depending on the construction of 

the device, can be even several orders larger than its actual mass.  

The passive damping system in which the fractional Kelvin model is connected in 

parallel with the inerter (Fig. 1), marked with the symbol KpB, generates a force 

expressed by the sum: 

𝑈𝐾𝑝𝐵(𝑡) = 𝑘0∆𝑞(𝑡) + 𝑐0𝐷𝑡
𝛼∆𝑞(𝑡) + 𝑏1∆𝑞̈(𝑡), (3) 

where, 𝑘0 is the elasticity parameter. 
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If the spring element in the KpB model is omitted (Fig. 1), i.e. 𝑘0 = 0 in Eqn. (3), a 

constitutive equation is obtained for the VpB model (a fractional viscous model 

connected in parallel with the inerter).  

 

 

 

 

 

Figure 1. The fractional Kelvin model connected in parallel with the inerter (KpB model) 

The system in which the fractional Kelvin model is connected in series with the 

inerter (Fig. 2) has been marked with the symbol KsB. In this case, the forces generated 

in the left and right nodes can be expressed by different equations with an additional 

internal variable 𝑞𝑑: 

𝑈𝐾𝑠𝐵
𝐿 (𝑡) = 𝑘0(𝑞𝑑(𝑡) − 𝑞𝑖(𝑡)) + 𝑐0𝐷𝑡

𝛼(𝑞𝑑(𝑡) − 𝑞𝑖(𝑡)), 

𝑈𝐾𝑠𝐵
𝑅 (𝑡) = 𝑏1 (𝑞̈𝑗(𝑡) − 𝑞̈𝑑(𝑡)), 

𝑈𝐾𝑠𝐵
𝐿 (𝑡) = 𝑈𝐾𝑠𝐵

𝑅 (𝑡). 

(4) 

The constitutive equation for the VsB model (a fractional viscous model connected in 

series with the inerter), can be obtained when the spring element in the KsB model is 

removed, i.e. k0 = 0 in Eqn. (4). 

 

 

 

 

 

Figure 2. The fractional Kelvin model connected in series with the inerter (KsB model) 

After applying the Laplace transformation, with zero initial conditions, the equations 

of motion 3 and 4 can be written as: 

𝑈𝐾𝑝𝐵(𝑠) = (𝑘0 + 𝑐0𝑠𝛼 + 𝑏1𝑠2)∆𝑞̅(𝑠) = 𝐵𝐾𝑝𝐵(𝑠, ∝)∆𝑞̅(𝑠) (5) 

for KpB model, and: 

𝑈𝐾𝑠𝐵(𝑠) =
𝑏1𝑠2(𝑘0 + 𝑐0𝑠𝛼)

𝑘0 + 𝑐0𝑠𝛼 + 𝑏1𝑠2
∆𝑞̅(𝑠) = 𝐵𝐾𝑠𝐵(𝑠, ∝)∆𝑞̅(𝑠) (6) 

for KsB model, where 𝑈(𝑠) and ∆𝑞̅(𝑠) denote the Laplace transforms of 𝑈(𝑡) and 

∆𝑞(𝑡), respectively, and 𝑠 is the Laplace variable. The above formulas describe the 

classic models, when 𝛼 = 1 is adopted. 

For a passively damped system, i.e. the structure equipped with viscoelastic dampers 

and inerters, the equation of motion can be written in the matrix form: 

qj 

𝑈𝐾𝑝𝐵  i j c0,  

b1 

𝑈𝐾𝑝𝐵 

k0 
qi 

c0,  

k0 

𝑈𝐾𝑠𝐵
𝐿  i j 

b1 𝑈𝐾𝑠𝐵
𝑅  

qd qj qi 
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𝐌0𝐪̈(𝑡) + 𝐂0𝐪̇(𝑡) + 𝐊0𝐪(𝑡) = 𝐩(𝑡) + 𝐟(𝑡) (7) 

where 𝐌0, 𝐂0 and 𝐊0  are respectively mass, damping and stiffness matrices of structure, 

that have the dimension (𝑛 × 𝑛) and n is the number of dynamic degrees of freedom of 

the structure. In addition, 𝐪(𝑡), 𝐩(𝑡), 𝐟(𝑡) denote the displacement vector, the excitation 

force vector, and the vector of interaction forces that act between the structure and the 

dampers. Laplace transformation of the equation of motion (7) leads to the equation: 

(𝑠2𝐌0 + 𝑠𝐂0 + 𝐊0)𝐪̅(𝑠) = 𝐩(𝑠) + 𝐟(̅𝑠) (8) 

In a system where p dampers are mounted on structure, the vector of interaction forces is 

in the form of sum: 

𝐟(̅𝑠) = − ∑ 𝐵𝑟(𝑠, ∝)𝐋𝑟𝐪̅(𝑠)𝑝
𝑟=1 = −𝐁𝑑(𝑠, ∝)𝐪̅(𝑠) , (9) 

where 𝐋𝑟 is the location matrix that determines the position of the r-th damper in the 

structure, 𝐵𝑟(𝑠, ∝) is the function defined in Eqn. (5) or (6). 

Finally, the equation of motion for the structure with VE dampers and inerters, written in 

the frequency domain, takes the form: 

(𝑠2𝐌0 + 𝑠𝐂0 + 𝐊0 + 𝐁𝑑(𝑠, ∝))𝐪̅(𝑠) = 𝐩(𝑠). (10) 

Assumption in Eqn. (10) 𝐩(𝑠) = 0, leads to a non-linear eigenproblem, which can be 

solved using the continuation method, e.g. as described in [17]. As a solution, the n 

number of eigenvalues si and corresponding eigenvectors 𝐪̅i are obtained. Then, in a 

similar way as in the case of small viscous damping, the obtained eigenvalues si allow to 

determine the dynamic properties of the considered structure equipped with VE dampers 

and inerters. Natural frequencies ωi and non-dimensional damping ratios γi can be 

determined as follows: 

𝜔𝑖
2 = 𝜇𝑖

2 + 𝜂𝑖
2,   𝛾𝑖 = −𝜇𝑖 𝜔𝑖⁄  , (11) 

where, 𝜇𝑖 = Re(𝑠𝑖) and 𝜂𝑖 = Im(𝑠𝑖). 

The non-dimensional damping ratio is a factor that allows to evaluate the damping 

properties of the considered system. Another parameter which allows to assess the 

effectiveness of the damping system is the so-called drift, which can be derived from the 

frequency response function. The frequency response function, or transfer function, 

describes the relationship between input and output in a linear system at steady-state 

vibrations. When the structure is excited by the harmonic force, i.e. 𝐩(𝑡) = 𝐩𝑒𝑠𝑡 =
𝐩𝑒j𝜆𝑡, where 𝜆 is the frequency of excitation, its response is in the form of the function 

𝐪(𝑡) = 𝐪̅𝑒j𝜆𝑡, where 𝐪̅ is a frequency response vector of displacements and 𝑗 = √−1. In 

the considered case, the solution of the equation of motion (10) is a vector: 

𝐪̅(𝑠) = 𝐃𝐻
−1(𝑠)𝐩(𝑠) = 𝐇(𝑠)𝐩(𝑠) (12) 

where 𝐇(𝑠) = 𝐃𝐻
−1(𝑠) is the frequency response function and 𝐃𝐻 denotes the dynamic 

stiffness matrix of the considered system: 

𝐃𝐻(𝑠) = 𝑠2𝐌0 + 𝑠𝐂0 + 𝐊0 + 𝐁𝑑(𝑠, ∝) (13) 

For the system excited by the ground motion with a given acceleration 𝑎𝑔(𝑡), the 

inertia forces acting along the structural degrees of freedom depend on the mass 

distribution, i.e. the mass matrix: 

𝐩(𝑡) = −𝐌0𝐫𝑝𝑎𝑔(𝑡), (14) 

where 𝐫𝑝 is an allocation vector defining the position of inertia forces generated by the 

ground motion. For the shear frame, in which the most of the mass is concentrated at the 
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level of floors, allocation vector has the form: 𝐫𝑝 = 𝑐𝑜𝑙(1,1, … ,1). This means that 

ground vibrations induce inertial forces on each story along each direction of the degrees 

of freedom. 

In order to estimate the damping efficiency, the response of the system excited with a 

frequency equal to the natural frequency 𝜔𝑖 and harmonic ground acceleration, i.e. 

𝑎𝑔(𝑡) = 𝐴𝑔𝑒jω𝑡, is derived:  

𝐪̅(𝜔) = 𝐇(𝜔)𝐴𝑔  (15) 

For unit ground acceleration: 𝐴𝑔 = 1.0, we obtain: 

𝐪̅(𝜔) = 𝐇(𝜔) = −(−𝜔2𝐌0 + j𝜔𝐂0 + 𝐊0 + 𝐁𝑑(𝜔, ∝))−1𝐌0𝐫𝑝 , (16) 

where, 𝐇(𝜔) = col(𝐻1, 𝐻2, … , 𝐻𝑛) is the vector of response transfer functions of 

displacements and the symbol 𝐻𝑖  means displacement along the ith degree of freedom. 

In the case of shear frames, the first mode of natural vibrations definitely dominates in 

the dynamic response of the structure, which is why this case was selected for analysis. 

The measure of damping adopted in the work is the so-called sum of drifts of the system 

excited with a frequency equal to the natural frequency 𝜔1 and unit ground acceleration: 

𝑆𝑚(ω1) = ∑ ∆𝐻𝑖(ω1)𝑛
𝑖=1  , (17) 

where, ∆𝐻𝑖 = |𝐻𝑖 − 𝐻𝑖−1| is a difference between displacements of two successive 

floors in a shear frame. Moreover, it is assumed that 𝐻0 = 0, i.e. ∆𝐻1 = |𝐻1 − 𝐻0| =
|𝐻1|. 
 

3. Temperature influence 

The dynamic behaviour of the viscoelastic damper harmonically excited, i.e. 𝑞(𝑡) =
𝑞0𝑒j𝜆𝑡,  can be described using a complex modulus 𝐾(𝜆): 

𝑈(𝜆) = 𝐾(𝜆)∆𝑞̅(𝜆) = [𝐾′(𝜆) + 𝑗𝐾"(𝜆)]∆𝑞̅(𝜆) , (18) 

where, 𝐾′(𝜆) is the storage modulus, 𝐾"(𝜆) is the loss modulus and the ratio between 

them is the loss factor 𝜂(𝜆) = 𝐾"(𝜆) 𝐾′(𝜆)⁄ .  
In order to determine the influence of temperature on the behavior of VE 

material, the temperature-frequency superposition principle [18] can be used: 
𝐾(𝜆, 𝑇) = 𝐾(𝜆0, 𝑇0) = 𝐾(𝛼𝑇𝜆, 𝑇0) , (19) 

where, 𝛼𝑇 is the so-called shift factor, 𝜆0 is the reference frequency and 𝑇0 is the 

reference temperature. According to this principle, for a thermoreologically simple 

material, the master curve, i.e. the module function determined in the frequency domain 

for the reference temperature 𝑇0 can be shifted horizontally to obtain module function 

for the actual temperature 𝑇. The horizontal shift factor 𝛼𝑇 is most often determined 

empirically, e.g. using the William-Landel-Ferry formula: 

log 𝛼𝑇 = −𝐶1Δ𝑇 (𝐶2 + Δ𝑇)⁄  , (20) 

where, 𝐶1 and 𝐶2 are the experimentally determined constants and Δ𝑇 = 𝑇 − 𝑇0. It is 

assumed that the fractional free volume of the material increases linearly with respect to 

temperature and that the viscosity of the material decreases rapidly as its free volume 

increases.  

In the analyzed systems, the viscoelastic material is described by the fractional Kelvin 

model: 
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𝑈̅𝐾(𝑠) = (𝑘0 + 𝑐0𝑠𝛼)∆𝑞̅(𝑠) (21) 

After entering 𝑠 = 𝑗𝜆 in Eqn. (21) and assuming that 𝑗𝛼 = cos(𝛼𝜋 2⁄ ) + 𝑗 sin(𝛼𝜋 2⁄ ) , 
the formulas for the above-mentioned modules can be written as:  

𝐾𝑝
′ (𝜆) = 𝑘0 + 𝑐0𝜆𝛼 cos(𝛼𝜋 2⁄ ) 

𝐾𝑝
′′(𝜆) = 𝑐0𝜆𝛼 sin(𝛼𝜋 2⁄ ) 

(22) 

The module functions specified at the reference frequency 𝜆0 and the reference 

temperature 𝑇0 are: 

𝐾𝑝
′ (𝜆0, 𝑇0) = 𝑘0 + 𝑐0𝜆0

𝛼 cos(𝛼𝜋 2⁄ ) 

𝐾𝑝
′′(𝜆0, 𝑇0) = 𝑐0𝜆0

𝛼 sin(𝛼𝜋 2⁄ ) 
(23) 

The above functions can be determined for actual frequency 𝜆 and temperature 𝑇:  

𝐾𝑝
′ (𝜆, 𝑇) = 𝑘0̃ + 𝑐0̃𝜆𝛼 cos(𝛼𝜋 2⁄ ) 

𝐾𝑝
′′(𝜆, 𝑇) = 𝑐0̃𝜆𝛼 sin(𝛼𝜋 2⁄ ) 

(24) 

However, according to the relationship (19), the functions of the modules (24) are 
equivalent to the solutions obtained at the reference temperature 𝑇0 and shifted 
frequency  𝜆0 = 𝛼𝑇𝜆: 

𝐾𝑝
′ (𝛼𝑇𝜆, 𝑇0) = 𝑘0 + 𝑐0(𝛼𝑇𝜆)𝛼 cos(𝛼𝜋 2⁄ ) 

𝐾𝑝
′′(𝛼𝑇𝜆, 𝑇0) = 𝑐0(𝛼𝑇𝜆)𝛼 sin(𝛼𝜋 2⁄ ) 

(25) 

Comparing solutions (24) and (25), the following relationships can be formulated: 

𝑘0̃ = 𝑘0,  𝑐0̃ = (𝛼𝑇)𝛼 𝑐0 (26) 

The above analyzes can be summarized that for a thermoreologically simple viscoelastic 

material the effect of temperature change can be taken into account by appropriate 

modification of the damping parameter 𝑐0 in the considered model [16]. 

 

4. Numerical examples 

In the numerical example, the dynamic response of a five-story building structure 

modeled as a shear frame was analyzed. It was assumed that the mass of the structure is 

concentrated at the floor levels and on each storey is the same, similarly, the stiffness 

parameter of each storey is the same, i.e. 𝑚𝑖 = 5000 kg, 𝑘𝑖 = 2600 kN m⁄ , 𝑖 = 1, … ,5. 

The test was carried out for structure with regularly distributed dampers and inerters 

(Fig. 3). The rheological properties of each considered damper model were: 𝑘0 =
400 kN m⁄ , 𝑐0 = 40 kNs m⁄ , and the equivalent mass of the inerter was 𝑏1 = 3 000 kg.  

The Deltane 350 (Paulstra) polymer [15] was adopted as a viscoelastic material in 
the damper, for which the constants Ci appearing in the WLF formula (20) were 
determined, at the reference temperature T0 = 12°, i.e. C1 = 6.71 and C2 = 135.0. 
The damping properties of the structure are neglected, and the parameter ∝= 1.0. 
  



Vibrations in Physical Systems 2020, 31, 2020222  (7 of 10) 

a)         b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Five-story building structure: a) shear frame model, b) dampers distribution 

The results of calculation are presented in the graphs (Fig. 4 and 5),  for various 
models of dampers, i.e. Viscous model (V), Viscous model in series with inerter 
(VsB), Viscous model in parallel with inerter (VpB), Kelvin model (K), Kelvin model 
in series with inerter (KsB) and Kelvin model in parallel with inerter (KpB). In 
Fig. 4 the change of the first natural frequency ω1 and the sum of drifts 𝑆𝑚(ω1) 
caused by the temperature increase for various models is shown.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The natural frequency ω1 and the sum of drifts 𝑆𝑚(ω1)  
versus temperature for various models (𝑏1 = 3000 kg) 
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The relationships between the values of the non-dimensional damping ratios γ1 and 
γ2 and temperature for various models are shown in Fig. 5. Although for higher 
temperature values of the non-dimensional damping ratios have comparable values 
for each model (see Fig. 5), the sum of drifts definitely increases only for the VsB, K 
and V models (see Fig. 4). In addition, the influence of temperature on the values of 
damping ratios γ1 and γ2 for different masses of inerter 𝑏1 is shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The non-dimensional damping ratios: γ1 and γ2  

versus temperature for various models (𝑏1 = 3000 kg) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The non-dimensional damping ratios: γ1 and γ2  

versus temperature for various mass of inerter 𝑏1 (KsB model) 

It is worth noting that for larger inerter mass values 𝑏1, the damping properties are better 

for the analyzed models (see Fig. 6). 

Figure 7 shows the change in the value of the non-dimensional damping ratio 

depending on the mass of the inerter. These functions are given for three different values 

of the  parameter, i.e. the order of the fractional derivative. 

 

b1 [x 103 kg] b1 [x 103 kg] 
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Figure 7. The non-dimensional damping ratios: γ1 and γ2  

versus mass of inerter 𝑏1 for various  values (KsB model) 

 

5. Conclusions  

The presented analysis concerns the study of the effect of temperature on the dynamic 

characteristics of structures with VE dampers and inerters. Thermoreologically simple 

materials are analyzed for which, according to the principle of temperature-frequency 

superposition, the master curve can be shifted horizontally. In this case, the change in 

temperature affects the value of only one parameter of the considered models, i.e. the 

damping factor 𝒄𝟎. Based on numerical calculations, it can be concluded that the inerter 

mass and the way it is connected to the VE damper has a significant impact on the 

dynamic characteristics of the structure and on the sensitivity of these characteristics to 

temperature changes. The inerter has the greatest influence on the operation of the 

viscoelastic damper when it is connected in series with the damper (VsB and KsB 

models) and its mass is relatively high. In the case of a shear frame with an even 

distribution of mass and stiffness, the best damping effect is provided by the damper 

located on the lowest floor. In general, decreasing the  parameter, i.e. the order of the 

fractional derivative, reduces the non-dimensional damping ratio. However, in some 

cases (see Fig. 7), this ratio is greater with lower  values and low inerter mass. 
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