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Abstract 

In this note vibrations of thin periodic plate strips with periodically distributed system of two concentrated 
masses are analysed. Moreover, it is assumed that every concentrated mass is connected to a string, which 
cause the effect of damping in vibrations. Governing equation for such structure is defined as a differential 
equation with highly oscillating, periodic and non-continuous coefficients. In order to solve the equation, 
tolerance averaging technique is applied. As a result, governing equations with constant coefficients are ob-
tained. In an example, derived model is used to calculate lower and higher frequencies of the travelling wave 
related to the internal periodic structure. 
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1. Introduction 

In this paper thin plate strips with span L are considered. It is assumed, that these plate 
strips have certain internal periodic microstructure related to a system of two concentrat-
ed masses, distributed periodically along the x1-axis. Additionally, there are strings at-
tached to concentrated masses, which make it possible to observe the effect of damping 
on plate's strips vibrations. Given system of concentrated masses and strings makes it 
possible to distinguish a small, repeatable element, called the periodicity cell. The span 
of every cell is equal to l, which is called the microstructure parameter and is small 
compared to the plate span L. 

Vibrations of these structures are described by the governing equation with highly 
oscillating, periodic, non-continuous coefficients, which is not a good tool to analyse 
special problems. Hence, investigations of such structures can be performed using dif-
ferent models. The most popular one is based on the homogenization method, which 
uses e.g. effective plate stiffness (cf. [3]). However, equations of these models neglect 
the effect of the microstructure size on the plate strip behaviour. Thus, to take into ac-
count this effect the tolerance averaging technique is used to average the differential 
equation of this plate strip. As a result, governing equations with constant coefficients 
are obtained. 

The main aim of this paper is to derive exact formulas for frequencies of the travel-
ling wave for the plate strip using the tolerance averaging technique, which was pro-
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posed and explained by Woźniak and Wierzbicki [5], Woźniak, Michalak and Jędrysiak 
(eds.) [4]. Afterwards, some numerical examples of the plate strips behaviour are pre-
sented. 

2. Modelling foundations 

Let Ox1x2x3 be an orthogonal Cartesian coordinate system and define t as the time coor-
dinate. It is also assumed, that our considerations are treated as independent of 
x2-coordinate. Let us introduce the following denotations: 1xx ≡ , 3xz ≡ , ],0[ Lx ∈ , 

]2/,2/[ hhz −∈ , where h is the constant thickness of the plate. Hence, it can be as-

sumed that the plate strip is described in the interval ),0( L=Λ , with the basic cell 

]2/,2/[ ll−≡Ω  in the interval Λ , where l is the length of the basic cell, called  
a microstructure parameter. For further transformations, it is crucial, that the micro-
structure parameter l satisfies conditions: Ll <<  and lh << . Deflections of the plate 

strip are denoted as w(x,t) ( Λ∈x , ),( 10 ttt ∈ ). 

Let us assume, that the material properties of the plate strip ,Λ),ρ(),( ∈xxxE  are 

periodic functions in x. Hence, functions describing the mass density per unit area of 
midplane µ and the bending stiffness B can be stated as follows: 

 ).(),(ρ)(µ
)ν1(12 2

3

xEBxhx h

−
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Moreover, the plate strip is connected to a system of periodically distributed strings, 
which are described by the damping parameter c(x). In order to apply the tolerance aver-
aging technique, the parameter c(x) must satisfy all conditions of a periodic function. 

It is assumed, that the plate strip fulfils prerequisites of the Kirchhoff-type thin plate 
theory. Denoting the derivative of x by ∂, and the time derivative by dots, the partial 
differential equation of the fourth order for deflection w(x,t) takes the following form: 

 ,0),()(µ),()()],()([ =++∂∂∂∂ txwxtxwxctxwxB &&&  (2) 

with coefficients being highly oscillating, non-continuous, periodic functions  
in x. Equation (2) describes free vibrations of the plate strip with the effect of damping 
on its vibrations and stands a starting point for further investigations in the framework of 
the tolerance averaging technique. 

In the tolerance modelling procedure some introductory concepts, like: an averaging 
operator, a slowly varying function, a tolerance-periodic function and a highly oscillat-
ing function, are used. These concepts were presented in a various literature, for exam-
ple: by Woźniak and Wierzbicki [5]. 

3. Modelling assumptions 

There are two main assumptions in the tolerance averaging technique. The first of them 
is the micro-macro decomposition of the plate strip deflection w, which can be formulat-
ed as follows: 

 ,,,,1),,()(),(),( Λ∈=+= xNAtxQxgtxWtxw AA
K  (3) 
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where ),( tW ⋅  is the macrodeflection of the plate strip, ),( tQ A ⋅  are the fluctuation am-

plitudes and )(⋅Ag  are the known fluctuation shape functions. Functions ),( tW ⋅  and 

),( tQ A ⋅  are the new basic kinematic unknowns, which are for every t slowly varying 

functions. 
The tolerance averaging approximation is the second modelling assumption. Assum-

ing that the terms O(δ) are negligibly small, the following relations can be proved in 
the course of modelling: 
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where δ is a tolerance parameter, Φ  is tolerance periodic function, Φ  is a periodic 

approximation of Φ , F is a slowly varying function and )(⋅Ag  is a fluctuation shape 

function. 

4. Modelling procedure 

Basing on the introductory concepts presented in [4] nad [5] and the calculations devel-
oped by Jędrysiak in [1] and Jędrysiak and Michalak [2], the modelling procedure can be 
outlined as follows. 

As mentioned before, the starting point is the Kirchhoff-type thin plate free vibra-
tions differential equation (2). In order to obtain equations with constant coefficients, 
some transformations must be performed. These transformations are: substituting 
the micro-macro decomposition (3) to equation (2), applying the averaging operator and 
using the tolerance averaging approximations (4). As a result, we arrive at a system of 
equations for W(⋅,t) and QA(⋅,t) in the form: 

 

.0µ

,0µ

=><+><+><+

+>∂∂∂∂<+∂∂>∂∂<

=><+><+><+∂∂>∂∂<+∂∂∂∂><

ABAABAA

ABAA

AAAA

QggQgcgWcg

QggBWgB

WQcgWcQgBWB

&&&&

&&&&

 (5) 

In the system of equations (5) the first equation describes vibrations of the plate strip 
in the macro scale, while the second stands for the system of N equations, which refers to 
microvibrations. It can be observed, that only the underlined terms are dependent on the 
microstructure parameter l. Keeping in mind the fact, that coefficients in the system of 
equations above are constant, it is possible to obtain a convenient solution describing 
free vibrations of the plate strip, including both the effect of the microstructure and 
damping.  
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5. Frequencies of plate strip free vibrations with the influence of damping 

In this section a homogenous weightless and unbounded plate strip along the x-axis is 
considered. Periodicity of the structure is related to a system of two periodically distrib-
uted concentrated masses M1 and M2 and strings attached to those masses. Strings are 
described by their damping parameters, c1 and c2 respectively, cf. Figure 1. 
 

 
Figure 1. The plate strip with a system of two periodically distributed concentrated 

masses and strings 

In the further investigations Young’s modulus E, Poisson’s ratio ν and thickness h of 
the plate are assumed to be constant. Moreover, the plate mass is negligibly small when 
compared to concentrated masses M1 and M2. 

According to a structure of the periodicity cell of plate strips and bearing in mind 
the normalizing condition <µg>=0, only one fluctuation shape functions gA, A=1, is 
assumed. Denoting as follows: 

 

,ˆ,,~
,µˆ,µ~
,ˆ,

~

42

4

1

><≡><≡>≡<

><≡>≡<

>∂∂∂∂≡<>≡<

≡

−−

−

cgglccglccc

gglmm

ggBDBD

gg

 (6) 

equations (5) take the form: 
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Equations (7) stand for a system of equations for the macrodeflection W and the fluc-
tuation amplitude Q. The first equation describes fundamental vibrations of the plate 
strip (e.g. lower frequencies of the travelling wave), while the second refers to micro-
structural vibrations (related to higher frequencies of the travelling wave). Solutions to 
those equations can be assumed in the form: 



 Vibrations in Physical Systems Vol.26 (2014) 165 

 
)],ω(exp[),(

)],ω(exp[),(

tkxiAtxQ

tkxiAtxW

Q

W

−=

−=
 (8) 

where WA , QA  are amplitudes, k is a wave number, t is a time coordinate and ω  is a 

frequency. After some transformations formulas for the lower ( −ω ) and higher ( 1:ω+ ) 

frequencies can be obtained as roots of the characteristic equation in the form: 
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By solving the equation above, it is possible to obtain four different roots of the char-
acteristic equation: a pair of numbers, which refers to lower frequencies of the plate 
strip's free vibrations (macrovibrations) and a pair of complex conjugate numbers, which 
describes higher frequencies of the structure (vibrations related to microstructure). 

6. Eigenvalue problem 

Coefficients in equations (7) are strongly dependent on the type of assumed fluctuation 
shape function gA. In the following calculations, the exact fluctuation shape function is 
derived as a solution to an eigenvalue problem on the periodicity cell. In the case under 
consideration, eigenvalue problem takes the following form: 

 ,0)(λ)(µ)( 2 =−∂∂∂∂ xgxxgB  (10) 

where B is the stiffness defined by (1)2 and g(x) is a periodic function related to eigen-
value λ≡αl (α is the wave number). Assuming that the plate mass is negligibly small 
when compared to the concentrated masses and applying proper periodic boundary con-
ditions and the normalizing condition <µg>=0, it is possible to obtain only one eigen-
function g(x), which describe a shape of free vibrations of the cell. 

In order to obtain the exact fluctuation shape function g(x), methods known from 
the structural mechanics can be used. For each point, in which the concentrated mass is 
posed to the plate, equilibrium equations for transversal forces and moments can be 
written. By applying certain boundary conditions in the form: 
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we arrive at the characteristic equation in the form of determinant equal to zero: 

 .4..1,,0det == rpL pr  (12) 

As a result, the second order equation for ω is obtained. Hence, it is possible to de-
rive one eigenvalue ω2. Basing on the obtained eigenvalue, the exact values of deflec-
tions along the periodicity cell can be calculated similarly to deflections of beams. 
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7. Results of calculations 

Using the tolerance averaging technique is a convenient way of investigating plate strips 
behaviour in the micro-scale. In this section, several numerical examples are presented in 
order to verify obtained formulas. 

Let us assume, that the concentrated mass M2 is a mass of reference, to which 
the mass M1 is compared. Similarly, let the damping coefficient c2 be a reference value 
for the coefficient c1. As a result, the following denotations can be made: 

 ,ξ,ζ 2121 ccMM ≡≡  (13) 

where ζ is a mass ratio and ξ is a damping coefficient ratio. 
Calculation examples has been performed for several different calculation cases. In 

every case, it has been assumed that the plate strip thickness h is equal to 0.1l. Addition-
ally, in order to obtain the exact dimensionless parameters of free vibrations frequencies, 
the ratio between reference mass M2 and stiffness coefficient B are defined as follows: 

 2

3

12
M

h
B ≡  (14) 

The calculation cases differ from each other with mass distributions (coordinates x1  
and x2), mass proportion and values (M1 and M2), and dispersion coefficients (c1 and c2). 
For details, cf. Table 1. 

Results are shown in Table 1 and Table 2 and in the form of charts describing the mi-
crovibrations amplitude versus time coordinate, cf. Figure 2. Additionally, all the calcu-
lations are performed for different values of dimensionless wave number 

];[ ππ−∈≡ klq , cf. Table 2. 

  
Figure 2. Damping of fluctuation amplitudes in chosen cases 

Table 1. Lower and higher frequencies of travelling wave in calculation cases 
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and for dimensionless wave number q=1.0 

Case 
Mass coordinates 

Mass propor-
tions 

Dispersion coeffi-
cients 

Lower frequ-
encies 

Higher frequencies 
x1 x2 M1 M2 c1 c2 

I 0,25l 0,75l 1 1 10-1 10-1 
-0,00042 
-0,09958 

-0,05±0,1718i 

II 0,25l 0,75l 3 1 10-1 10-1 
-0,00021 
-0,09979 

-0,05±0,1372i 

III 0,25l 0,75l 3 1 2·10-1 10-1 
-0,00012 
-0,18557 

-0,057±0,1297i 

IV 0,25l 0,75l 1 1 2·10-1 2·10-1 
-0,00021 
-0,19979 

-0,10±0,1483i 

V 0,4l 0,7l 1 1 10-1 10-1 
-0,00042 
-0,09958 

-0,05±0,2070i 

VI 0,4l 0,7l 3 1 10-1 10-1 
-0,00021 
-0,09979 

-0,05±0,1665i 

VII 0,4l 0,7l 3 1 2·10-1 10-1 
-0,00012 
-0,18328 

-0,058±0,1595i 

VIII 0,4l 0,7l 1 1 2·10-1 2·10-1 
-0,00021 
-0,19979 

-0,10±0,1880i 

Table 2. Comparison of lower and higher frequencies of travelling wave in different 
calculation cases depending on different dimensionless wave number q 

Case 
Lower frequencies Higher frequencies 
q=0.1 q=1.0 q=2.0 q=0.1 q=1.0 q=2.0 

I 
-4,2·10-8 
-0,10000 

-0,00042 
-0,09958 

-0,00718 
-0,09282 

-0,05±0,1718i -0,05±0,1718i -0,05±0,1718i 

II 
-2,1·10-8 
-0,10000 

-0,00021 
-0,09979 

-0,00345 
-0,09655 

-0,05±0,1372i -0,05±0,1372i -0,05±0,1372i 

III 
-1,2·10-8 
-0,18568 

-0,00012 
-0,18557 

-0,00192 
-0,18391 

-0,057±0,1297i -0,057±0,1297i -0,057±0,1297i 

IV 
-2,1·10-8 
-0,20000 

-0,00021 
-0,19979 

-0,00339 
-0,19661 

-0,10±0,1483i -0,10±0,1483i -0,10±0,1483i 

V 
-4,2·10-8 
-0,10000 

-0,00042 
-0,09958 

-0,00718 
-0,09282 

-0,05±0,2070i -0,05±0,2070i -0,05±0,2070i 

VI 
-2,1·10-8 
-0,10000 

-0,00021 
-0,09979 

-0,00345 
-0,09655 

-0,05±0,1665i -0,05±0,1665i -0,05±0,1665i 

VII 
-1,2·10-8 
-0,18340 

-0,00012 
-0,18328 

-0,00192 
-0,18157 

-0,058±0,1595i -0,058±0,1595i -0,058±0,1595i 

VIII 
-2,1·10-8 
-0,20000 

-0,00021 
-0,19979 

-0,00339 
-0,19661 

-0,10±0,1880i -0,10±0,1880i -0,10±0,1880i 
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8. Final remarks 

In this paper the tolerance averaging technique has been used to obtain the governing 
equations with constant coefficients for thin plate strips with internal periodic structure. 
By analyzing results shown in Tables 1 and 2 and Figure 2, it can be observed that: 

• the tolerance model is a convenient tool for the analysis of micro- and macro vi-
brations in case, in which the effect of damping has to be taken into account; 

• the lower frequencies of the travelling wave are dependent on the dimensionless 
wave number q; 

• as long as the mass proportions ζ and the dimensionless wave number q are con-
stant and 1ξ = , the lower frequencies do not depend on the mass distribution; 

• the obtained values of the higher frequencies are complex numbers, which real 
part describes the damping of vibrations while the imaginary part describes 
the period of vibrations; 

• the mass proportions and coordinates of the concentrated masses have an influ-
ence on the imaginary part of the higher frequency, but it seems that they have no 
effect on its real part; 

• the damping coefficients affect both real and imaginary part of the higher fre-
quencies; 

• the higher frequencies are not dependent on the dimensionless wave number q; 
• higher damping coefficients make vibration amplitudes decrease faster. 
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