PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lyapunov-based robust power controllers for a wind farm using parallel multicell converters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Solidne sterowniki mocy oparte na Lapunowie dla farmy wiatrowej z równoległymi konwerterami wielokomórkowymi
Języki publikacji
EN
Abstrakty
EN
In this paper, a robust nonlinear control technique for Wind Farm (WF) using a Doubly Fed Induction Generator (DFIG) via a parallel multicell converter (PMC) based on variable speed Wind Energy Conversion Systems (WECS) is presented. The principal concept is to use the backstepping technique to separate the DFIG's active and reactive power rapidly. The Lyapunov function is the foundation for this control strategy, ensuring the system's asymptotic stability. The simulation results show the implemented controller's validity and effectiveness.
PL
W artykule przedstawiono solidną nieliniową technikę sterowania farmą wiatrową (WF) opartą na generatorze indukcyjnym z podwójnym zasilaniem (DFIG) za pośrednictwem równoległego konwertera wieloogniwowego (PMC) stosowanego w systemach konwersji energii wiatrowej o zmiennej prędkości (WECS). Główną koncepcją jest zastosowanie techniki backstepping do solidnego rozdzielenia mocy czynnej i biernej DFIG. Podstawą tej strategii sterowania jest funkcja Lapunowa, która zapewnia asymptotyczną stabilność systemu. Przedstawiono wyniki symulacji, aby wykazać ważność i skuteczność wdrożonego kontrolera.
Rocznik
Strony
247--254
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Electrotechnics, Faculty of Electrical Engineering/Intelligent Control and Electrical Power Systems Laboratory, Djillali Liabes University, Sidi Bel-Abbes, Algeria
  • Department of Electrotechnics, Faculty of Electrical Engineering/Intelligent Control and Electrical Power Systems Laboratory, Djillali Liabes University, Sidi Bel-Abbes, Alge
  • Department of Electrotechnics, Faculty of Electrical Engineering/Intelligent Control and Electrical Power Systems Laboratory, Djillali Liabes University, Sidi Bel-Abbes, Algeria
autor
  • Department of Electrotechnics, Faculty of Electrical Engineering/Intelligent Control and Electrical Power Systems Laboratory, Djillali Liabes University, Sidi Bel-Abbes, Alge
  • Department of Electrotechnics, Faculty of Electrical Engineering/Intelligent Control and Electrical Power Systems Laboratory, Djillali Liabes University, Sidi Bel-Abbes, Alge
  • Department of Technology, Institute of Science and Technology, University Center of Naama, Algeria
Bibliografia
  • [1] IEA (2018) Global energy and CO2 status report. International Energy, Technical report. Agency. 2017. https://www.iea.org/publications/freepublications/publication/GECO2017.pdf
  • [2] REN21 (2018) Renewables—global status report, renew energy policy network for the 21st century (REN21). Technical report. REN21 Secretariat, Paris. 2018. http://www.ren21.net/status-of-renewables/globalstatus-report/
  • [3] REN21 (2017) Renewables global futures report (GFR).Technical report, renew energy policy network for the 21st century (REN21). REN21 Secretariat, Paris. 2017. http://www.ren21.net/future-of-renewables/globalfutures-report/
  • [4] PENA, Ruben, CLARE, J. C., et ASHER, G. M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings-Electric power applications, 143 (1996), No. 3, 231-241.
  • [5] MULLER, Set, DEICKE, M., et DE DONCKER, Rik W. Doubly fed induction generator systems for wind turbines. IEEE Industry applications magazine, 8 (2002), No. 3, 26-33.
  • [6] Akel, F., Ghennam, T., Berkouk, E. M., & Laour, M. (2014). An improved sensorless decoupled power control scheme of grid connected variable speed wind turbine generator. Energy Conversion and Management, 78 (2014), 584-594.
  • [7] Lopez, J., Sanchis, P., Roboam, X., & Marroyo, L. Dynamic behaviour of the doubly fed induction generator during three-phase voltage dips. IEEE Transactions on Energy conversion, 22(2007), No. 3, 709-717.
  • [8] Belabbas, B., Denai, M., & Allaoui, T. Hierarchical energy management and control to improve the reliability and efficiency of wind farms connected to the grid. International Transactions on Electrical Energy Systems, 30(2020), No. 7, e12400.
  • [9] Chikha, S., Barra, K., & Reama, A. Predictive current control of a wind energy conversion system based DFIG via direct matrix converter. In IREC2015 The Sixth International Renewable Energy Congress (pp. 1-7). 2015, March, IEEE.
  • [10] Rodriguez-Amenedo, J. L., Arnaltes, S., & Rodriguez, M. A. Operation and coordinated control of fixed and variable speed wind farms. Renewable energy, 33(2008), No. 3, 406-414.
  • [11] Ghennam, T., Aliouane, K., Akel, F., Francois, B., & Berkouk, E. M. Advanced control system of DFIG based wind generators for reactive power production and integration in a wind farm dispatching. Energy Conversion and Management, 105 (2015), 240-250.
  • [12] Atallah, M., Mezouar, A., Belgacem, K., Benmahdjoub, M. A., Saidi, Y., & Brahmi, B. Power Control and Management of DFIGs Wind Farm Equipped with Aggregation Methods by Using Local Supervision Unit Based on S-Function Builder. Journal of Control, Automation and Electrical Systems, 33(2022), No. 3, 912-928.
  • [13] Ouled Amor, W., Ghariani, M., & Guesmi, S. The electric production distribution method supervises a wind farm connected to the grid. International Journal Of Renewable Energy Research, 5(2015), No. 4, 944-951.
  • [14] Bouchiba, N., Barkia, A., Sallem, S., Chrifi-Alaoui, L., Drid, S., & Kammoun, M. B. A. Implementation and comparative study of control strategies for an isolated DFIG based WECS. The European Physical Journal Plus, 132(2017), No. 10, 1-13.
  • [15] Dbaghi, Y., Farhat, S., Mediouni, M., Essakhi, H., & Elmoudden, A. Indirect power control of DFIG based on wind turbine operating in MPPT using backstepping approach. International Journal of Electrical and Computer Engineering, 11(2021), No. 3, 1951.
  • [16] Djeriri, Y. Lyapunov-based robust power controllers for a doubly fed induction generator. Iranian Journal of Electrical and Electronic Engineering, 16(2020), No. 4, 551-558.
  • [17] Mechter, A., Kemih, K., & Ghanes, M. Backstepping control of a wind turbine for low wind speeds. Nonlinear Dynamics, 84(2016), No. 4, 2435-2445.
  • [18] Hamid, C., Derouich, A., Hallabi, T., Zamzoum, O., Taoussi, M., Rhaili, S., & Boulkhrachef, O. Performance improvement of the variable speed wind turbine driving a DFIG using nonlinear control strategies. International Journal of Power Electronics and Drive Systems, 12(2021), No.4, 2470.
  • [19] Yessef, M., Bossoufi, B., Taoussi, M., Lagrioui, A., & El Mahfoud, M. Evaluation of adaptive backstepping control applied to DFIG wind system used on the real wind profile of the Dakhla-Morocco City. In WITS (pp. 661-671). Springer, 2022. Singapore.
  • [20] Dbaghi, Y., Farhat, S., Mediouni, M., Essakhi, H., & Elmoudden, A. Indirect power control of DFIG based on wind turbine operating in MPPT using backstepping approach. International Journal of Electrical and Computer Engineering, 11(2021), No. 3, 1951.
  • [21] Hanafi, S., Fellah, M. K., Yaichi, M., & Benkhoris, M. F. Control of stacked multicellular inverter. Cell, 12, (2016), C11.
  • [22] Hanafi, S., Fellah, M. K., Guebli, A., & Chiali, E. Control with cyclic reports modulation of 3x2 stacked multicellular DC/AC converter. Cell, 11 (2014), 21.
  • [23] DJERIRI, Y. Robust second order sliding mode control of doubly-fed induction generator for wind energy conversion system. Acta Electrotechnica et Informatica, 20(2020), No. 3, 30-38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2913f1b0-6ef5-43e0-b6c8-3f60ecf2f36b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.