PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion resistance of PPTA Ni-based hardfacing layers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the corrosion resistance of four different hardfacing layers in a 3.5% NaCl solution was tested. Using 316L steel as a reference material, NiCrBSi, NiCrBSi + 35 wt% WC, and NiCrCuMo were deposited onto a structural steel S235JR substrate using the plasma powder transferred arc technology and prepared samples in a disc form for testing. The purpose of this investigation was to propose an alternative material to the commonly known anti-corrosion protection product of 316L steel simultaneously with better wear resistance. Its corrosion damage mechanism was assessed based on electrochemical examination and is related to changes in the microstructure of the sample surface investigated by using a potentiostat and a scanning electron microscope. Polarization tests were carried out, which confirmed that all proposed overlayers provide effective anti-corrosion protection. For all samples, the corrosion current density did not exceed 0.3 µA/cm2, and the corrosion potential was not less than −290.9 mV, which were considered positive results.
Wydawca
Rocznik
Strony
66--78
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 5 Łukasiewicza Street, Wrocław, 50371, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 5 Łukasiewicza Street, Wrocław, 50371, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 5 Łukasiewicza Street, Wrocław, 50371, Poland
Bibliografia
  • [1] Boulos, M.I., Fauchais, P., Pfender, E., Plasma torches for cutting, welding and PTA coating, Handbook of thermal plasmas, Springer International Publishing, 2017, pp. 1–83. doi: 10.1007/978-3-319-12183-3_47-1
  • [2] Chen, L., Li, M., Wang, S., Guo, Z., Liang, B., Xue, J., et al., Microstructure and corrosion resistance of Ni-Al coating prepared by plasma transferred arc technology, J. Mater. Eng. Perform., 2023, 33: 1596–1614. doi: 10.1007/s11665-023-08084-0
  • [3] Kalyankar, V.D., Wanare, S.P., Comparative investigations on microstructure and slurry abrasive wear resistance of NiCrBSi and NiCrBSi-WC composite hardfacings deposited on 304 stainless steel, Tribol. Ind., 2022, 44: 199–211. doi: 10.24874/ti.1075.03.21.05
  • [4] Suraj, R., Hardfacing and its effect on wear and corrosion performance of various ferrous welded mild steels, Mater. Today Proc., 2020, 42: 842–850. Elsevier Ltd. doi: 10.1016/j.matpr.2020.11.592
  • [5] Łatka, L., Biskup, P., Development in PTA surface modifications – a review, Adv. Mater. Sci., 2020, 20: 39–53. doi: 10.2478/adms-2020-0009
  • [6] Gatto, A., Bassoli, E., Fornari, M., Plasma transferred arc deposition of powdered high performances alloys: Process parameters optimisation as a function of alloy and geometrical configuration, Surf. Coat. Technol., 2004, 187: 265–271. doi: 10.1016/j.surfcoat. 2004.02.013
  • [7] Szala, M., Walczak, M., Hejwowski, T., Factors influencing cavitation erosion of nicrsib hardfacings deposited by oxy-acetylene powder welding on grey cast iron, Adv. Sci. Technol. Res. J., 2021, 15: 376–386. doi: 10.12913/22998624/143304
  • [8] Appiah, A.N.S., Wyględacz, B., Matus, K., Reimanna, Ł, Bialas, O., Batalha, G.F., et al., Microstructure and performance of NiCrBSi coatings prepared by modulated arc currents using powder plasma transferred arc welding technology, Appl. Surf. Sci., 2024, 648: 159065. doi: 10.1016/j.apsusc. 2023.159065
  • [9] Lachowicz, M., Metallurgical aspect of the corrosion resistance of 7000 series aluminum alloys, Mater. Sci. Pol., 2023, 41: 94–109. doi: 10.2478/msp-2023-0041
  • [10] Swietlicki, A., Walczak, M., Szala, M., Effect of shot peening on corrosion resistance of additive manufactured 17-4PH steel, Mater. Sci. Pol., 2022, 40: 135–151. doi: 10.2478/msp-2022-0038
  • [11] Poloczek, T., Lont, A., Górka, J., Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powders, Mater. Sci. Pol., 2022, 40: 14–27.doi: 10.2478/msp-2022-0039
  • [12] Fan, L., Li, X.Y., Chen, H.Y., Du, H.L., Shi, L., Corrosion behavior of spherical chromium carbide reinforced NiCrBSi hardmetal coatings in sulphuric acid solution, Medziagotyra, 2022, 28: 301–308. doi: 10.5755/j02.ms.29584
  • [13] Appiah, A.N.S., Bialas, O., Żuk, M., Czupryński, A., Sasu, D.K., Adamiak, M., Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology, Mater. Sci. Pol., 2022, 40: 42–63. doi: 10.2478/msp-2022-0033
  • [14] Rojas, J.G.M., Ghasri-Khouzani, M., Wolfe, T., Fleck, B., Henein, H., Qureshi, A.J., Preliminary geometrical and microstructural characterization of WC-reinforced NiCrBSi matrix composites fabricated by plasma transferred arc additive manufacturing through Taguchi-based experimentation, Int. J. Adv.Manuf. Technol., 2021, 113: 1451–1468. doi: 10.1007/s00170-020-06388-2
  • [15] Sreevidya, N., Rani, R., Das, C.R., Mathews, T.,bAlbert, S.K., Vasudevan, M., et al., Effect of dilutionon high-temperature and high-vacuum tribological behaviour of Ni-Cr-B-Si hardfaced coating, Trans. Indian. Inst. Met., 2023, 76: 3127–3136. doi: 10.1007/s12666-023-02963-9
  • [16] Balanovskii, A.E., Chieu, N.V., The influence of chromium carbide on corrosion resistance of plasma NiCrBSi coating, Prot. Met. Phys. Chem. Surf., 2022,b58: 764–771. doi:10.1134/S2070205122040074
  • [17] Ortiz, A., García, A., Cadenas, M., Fernández, M.R., Cuetos, J.M., WC particles distribution model in the cross-section of laser cladded NiCrBSi + WC coatings, for different wt% WC, Surf. Coat. Technol., 2017, 324: 298–306. doi: 10.1016/j.surfcoat.2017.05.086
  • [18] Qiao, L., Wu, Y., Hong, S., Long, W., Cheng, J., Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying, Ceram. Int., 2021, 47: 1829–1836. doi: 10.1016/j.ceramint.2020.09.009
  • [19] Huang, S., Sun, D., Xu, D.,Wang,W., Xu,H.,Microstructures and properties of NiCrBSi/WC biomimetic coatings prepared by plasma spray welding, J. Bionic Eng., 2015, 12:592–603. doi: b10.1016/S1672-6529(14)60149-9
  • [20] Pierson, H.O., Handbook of chemical vapor deposition: Principles, technology, and applications, Noyes Publications, Westwood, New Jersey, USA, 1999
  • [21] Koczkodaj, S., Mizera, J., Moszczynska, D., Zdunek, J., Plocinska, M., Szpyrka, J., et al., Comparison of the performance properties of commercially produced roller cone bit coatings, Mater. Sci. Pol., 2023, 41: 110–123. doi: 10.2478/msp-2023-0008
  • [22] Ji, J.B., Tong, J., Corrosion rate and mechanical properties of 316L stainless steel wires in different corrosive conditions, Appl. Mech. Mater., 2014, 441: 48–52. doi: 10.4028/www.scientific.net/AMM.441.48
  • [23] Cai, B., Liu, Y., Tian, X., Wang, F., Li, H., Ji, R., An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater, Corros. Sci., 2010, 52: 3235–3242. doi: 10.1016/j.corsci.2010. 05.040
  • [24] Jin, L., Guo, Y., Liu, F., Electrochemical and stress corrosion behaviors of 316L stainless steel in the borate solution, Int. J. Electrochem. Sci., 2020, 15: 4421–4433
  • [25] Szymańska, A., Sikorski, K., Kazior, J., The structure of nanocrystalline stainless steel powders obtained by ball milling and duplex stainless steel formed by their sintering, Solid. State Phenom., Trans Tech Publications Ltd 2005, 101–102: 135–138. doi: 10.4028/ www.scientific.net/ssp.101-102.135
  • [26] Acar, A.N., Ekşi, A.K., Ekicibil, A., Effect of pressure on the magnetic and structural properties of X2CrNiMo17-12-2 austenitic stainless steel prepared by powder metallurgy method, J. Mol. Struct., 2019, 1198: 126876
  • [27] Głowacka, M., Łabanowski, J., Inżynieria powierzchni,Wydawnictwo PWSZ, Elbląg, 2014 (in Polish)
  • [28] Pan, L.H., Yang, R.C., Researched on the corrosion resistance of Ni-Cr-Mo-Cu alloy to aqueous change with the APF in regular way: An approach of quantum electrochemistry, Appl. Mech. Mater., 2011, 55–57: 378–381. Trans Tech Publications Ltd. doi: 10.4028/www.scientific.net/AMM.55-57.378
  • [29] Yang, J., Zou, H., Li, X., Chen, J., Lv, L., Wen, Y., et al., Effects of Cr content on the corrosion behavior of porous Ni-Cr-Mo-Cu alloys in H3PO4 solution, Mater. Res. Express, 2021, 8: 096522. doi: 10.1088/2053-1591/ ac1d1a
  • [30] Yang, J., Li, X., Lv, L., Liu, X., Zou, H., Zhang, C., et al., Porous Ni-Cr-Mo-Cu alloys fabricated by elemental powder reactive synthesis, Mater. Res. Express, 2021, 8: 096527. doi: 10.1088/2053-1591/ac1f49
  • [31] Li, X., Yang, J., Feng, X., Hu, Y., Zou, H., Zhang, C., et al., Electrochemical performance of porous Ni- Cr-Mo-Cu alloys for hydrogen evolution reactions in alkali solution, Mater. Res. Express, 2020, 7: 095505. doi: 10.1088/2053-1591/abb562
  • [32] https://www.swedishmesteel.com/files/mr/Durmat% 20PTA%20Laser%20Thermal%20Spray.pdf, Durum Wear Protection GMBH, 2024
  • [33] PN-EN 10025-2, Hot rolled products of structural steels, Warszawa, Polski Komitet Normalizacyjny, 2019 [34] KT 106 K i O przed KMM. PN-EN ISO 17475:2010, Korozja metali i stopów- Elektrochemiczne metody badań- Wytyczne wykonywania potencjostycznych i potencjodynamicznych pomiarów polaryzacyjnych, Poland, 2010
  • [35] Haribaskar, R., Kumar, T.S., The impact of successive laser shock peening on surface integrity and residual stress distribution of laser powder-bed fused stainless steel 316L, Phys. Scr., 2024, 99: 055929. doi: 10. 1088/1402-4896/ad385a
  • [36] Matějíček, J., Vosáhlo, J., Rohan, P., PTA deposition ofW+ Cu composites for fusion reactors. Metal 2021 - 30th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, TANGER Ltd., 2021, pp. 1013–1022. doi: 10.37904/metal.2021.4249hardfacing surfaces, Weld. Int., 2010, 24: 241–248. doi: 10.1080/09507110902843974
  • [38] Yan, M., Zhu, W.Z., Surface remelting of Ni-Cr-B-Si cladding with a micro-beam plasma arc, Surf. Coat. Technol., 1997, 92: 157–b163.
  • [39] Farahpour, P., Edris, H., Kheirikhah, M.M., Mirrahimi, A.H., Influence of high velocity oxy-fuel parameters on the corrosion resistance of NiCr coatings, Proc. Inst. Mech. Eng., Part L, 2013, 227: 318–335. doi: 10.1177/1464420712459993
  • [40] Lisiecki, A., Kurc-Lisiecka, A., Laser cladding of NiCrBSi/WC + W2C composite coatings, Coatings, 2023, 13: 576. doi: 10.3390/coatings13030576
  • [41] Matějíček, J., Antoš, J., Rohan, P., W + Cu and W + Ni composites and fgms prepared by plasma transferred arc cladding, Materials, 2021, 14: 1–11. doi: 10.3390/ma14040789
  • [42] Makarov, A.V., Soboleva, N.N., Malygina, I.Y., Osintseva, A.L., Formation of wear-resistant chromium- nickel coating with extra high thermal stability by combined laser-and-heat treatment, Met. Sci. Heat. Treat., 2015, 57: 161–168. doi: 10.1007/s11041-015-9856-8
  • [43] Makarov, A., Korobov, Y., Soboleva, N., Khudorozhkova, Y., Vopneruk, A., Balu, P., et al., Wear-resistant nickel-based laser clad coatings for high-temperature applications, Lett. Mater., 2019, 9: 470–474. doi: 10.22226/2410-3535-2019-4-470-474
  • [44] Sourmail, T., Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol., 2001, 17: 1–14. doi: 10.1179/026708301101508972
  • [45] Srinivasan, N., Sensitization of austenitic stainless steels: Current developments, trends, and future directions, Metall. Microstruct. Anal., 2021, 10: 133–147. doi: 10.1007/s13632-021-00724-y
  • [46] Kaur, H., Singh, H., Improving pitting corrosion resistance of AISI 316L weld overlays via inconel 82 additions, Mater. Today Proc., 2022, 62: A7–A13. doi: 10.1016/j.matpr.2022.08.472
  • [47] Parvathavarthini, N. Sensitization and testing for intergranular corrosion. Corrosion of austenitic stailess steels, Elsevier, Cambridge, England, 2002, pp. 117–138. doi: 10.1533/9780857094018.139
  • [48] Di Schino, A., Testani, C., Corrosion behavior and mechanical properties of AISI 316 stainless steel Clad Q235 plate, Metals (Basel), 2020, 10: 552. doi: 10.3390/met10040552
  • [49] Padilha, A.F., Rios, P.R., Decomposition of austenite in austenitic stainless steels, ISIJ Int., 2002, 42: 325–327. doi: 10.2355/isijinternational.42.325
  • [50] Gadhikar, A.A., Sharma, C.P., Goel, D.B., Sharma, A.,
  • Effect of heat treatment on carbides in 23-8-N steel, Met. Sci. Heat. Treat., 2011, 53: 293–298. doi: 10.1007/s11041-011-9385-z
  • [51] de Souza Silva, E.M.F., da Fonseca, G.S., Ferreira, E.A., Microstructural and selective dissolution analysis of 316L austenitic stainless steel, J. Mater. Res. Technol., 2021, 15: 4317–4329. doi: 10.1016/j.jmrt.2021.10.009
  • [52] Souto, J.I.V.d., Ferreira, S.D., Lima, J.S.d., Castro, W.B.d., Grassi, E.N.D., Santos, T.F.d.A., Effect of GMAWProcess parameters and heat input on weld overlay of austenitic
  • stainless steel 316L-Si, Soldag. Inspeção, 2023, 28: e2809. doi: 10.1590/0104-9224/si28.09
  • [53] Anita, T., Shaikh, H., Khatak, H.S., Amarendra, G., Effect of heat input on the stress corrosion cracking behavior of weld metal of nitrogen-added AISI Type
  • 316 stainless steel, Corrosion, 2004, 60: 873–880.doi: 10.5006/1.3287869
  • [54] Fang, Z., Wu, Y., Zhu, R., Stress corrosion cracking of type 304 stainless steel weldments in the active state, Corrosion, 1994, 50: 171–175. doi: 10.5006/1.3293508
  • [55] Lachowicz, M., Nowak, D., Lachowicz, M., Korozja połączenia spawanego wykonanego na stali austenitycznej X2CrNi18-9 wywołana występowaniem fazy sigma, Prz. Spaw. Weld. Technol. Rev., 2017, 89:22–26. doi: 10.26628/ps.v89i8.800
  • [56] Walczak, M., Szala, M., Okuniewski, W., Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel, Materials, 2022, 15: 9000. doi: 10. 3390/ma15249000
  • [57] Rutkowska-Gorczyca, M., Podrez-Radziszewska, M., Kajtoch, J., Corrosion resistance and microstructure of steel aisi 316L after cold plastic deformation, Metall. Foundry Eng., 2009, 35: 35. doi: 10.7494/mafe. 2009.35.1.35 Monika Górnik et al.
  • [58] Lachowicz, M.M., Lachowicz, M.B., The mechanism of corrosion of steel 304L in the presence of copper in industrial installations/Mechanizm korozji stali austenitycznej 304L W obecności miedzi w instalacjach przemysłowych, Arch. Metall. Mater., 2015, 60: 2657–2662. doi: 10.1515/amm-2015-0429
  • [59] Saadi, S.A., Yi, Y., Cho, P., Jang, C., Beeley, P., Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution, Corros. Sci., 2016, 111: 720–727. doi: 10.1016/j.corsci.2016.06.011
  • [60] Yi, Y., Cho, P., Al Zaabi, A., Addad, Y., Jang, C., Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution, Corros. Sci., 2013, 74: 92–97. doi: 10.1016/j.corsci.2013.04.028
  • [61] Riley, A.M., Wells, D.B., Williams, D.E., Initiation events for pitting corrosion of stainless steel?, Corros. Sci., 1991, 32: 1307–1313. doi: 10.1016/0010- 938X(91)90050-Y
  • [62] Gu, R., Trisnanto, S.R., Brochu, M., Omanovic, S., Cyclic potentiodynamic passivation of 316L stainless steels of different crystallographic orientation produced by laser powder bed fusion: Towards the improvement of corrosion resistance, Can. J. Chem. Eng., 2024, 102: 196–202. doi: 10.1002/cjce.25050
  • [63] Lachowicz, M., Elektrochemiczne i mikrostrukturalne aspekty rozwoju niszczenia korozyjnego części maszyn i urządzeń, Instytut Technologii Eksploatacji, Wydawnictwo Naukowe (in Polish), 2020
  • [64] Lachowicz, M.M., Metallurgical aspects of the corrosion resistance of 7000 series aluminum alloys – a review, Mater. Sci. Pol., 2023, 41: 159–180. doi: 10.2478/ msp-2023-0041
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29129103-7244-42cf-921b-8b2b7c093baa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.