PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deployment of a predictive-like optimal control law on a servo drive system using linear programming approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current drive control systems tend to push control loops to the limits of their performance. One of the ways of doing so is to use advanced optimization algorithms, usually related to model-based off-line calculations, such as genetic algorithms, the particle swarmoptimisation or the others. There is, however, a simpler way, namely to use predictive control formalism and by formulation of a simple linear programming problem which is easy to solve using powerful solvers, without excessive computational burden, what is a reliable solution, as whenever the optimization problem has a feasible solution, a global minimizer can be efficiently found. This approach has been deployed for a servo drive system operated by a real-time sampled-data controller, verified between model-in-the-loop and hardwarein- the-loop configurations, for a range of prediction horizons, as an attractive alternative to classical quadratic programming-related formulation of predictive control task.
Rocznik
Strony
1005--1016
Opis fizyczny
Bibliogr. 13 poz., fig.
Twórcy
  • Institute of Robotics and Machine Intelligence Poznan University of Technology Piotrowo 3a Str., 60-965 Poznań, Poland
  • IT.integro sp. z o.o. Ząbkowicka 12 Str., 60-166 Poznań, Poland
Bibliografia
  • [1] Burns R.S., Advanced Control Engineering, Butterworth Heinemann (2001).
  • [2] Camacho E.F., Bordons C., Model Predictive Control, Springer-Verlag (1999).
  • [3] Gad A.G., Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review, Archives of Computational Methods in Engineering, vol. 29, pp. 2531–2561 (2022), DOI: 10.1007/s11831-021-09694-4.
  • [4] Goodwin G.C., Graebe S.F., Salgado M.E., Control System Design, Prentice-Hall (2000).
  • [5] Horla D., Experimental Results on Actuator/Sensor Failures in Adaptive GPC Position Control, Actuators, vol. 10, no. 3, pp. 1–18 (2021), DOI: 10.3390/act10030043.
  • [6] Katoch S., Chauhan S.S., Kumar V., A Review on Genetic Algorithm: Past, Present, and Future, Multimedia Tools and Applications, vol. 80, pp. 8091–8126 (2021), DOI: 10.1007/s11042-020-10139-6.
  • [7] Ławryńczuk M., Marusak P.M., Chaber P., Seredyński D., Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods, Energies, vol. 15, 2483 (2022), DOI: 10.3390/en15072483.
  • [8] Ławryńczuk M., Nebeluk R., Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-function, Sensors, vol. 21, 5835 (2021), DOI: 10.3390/s21175835.
  • [9] Maciejowski J., Predictive Control with Constraints, Prentice Hall (2002).
  • [10] http://www.inteco.com.pl/products/modular-servo/servo/, accessed June 2023.
  • [11] http://www.mathworks.com/products/optimization.html, accessed June 2023.
  • [12] https://www.mathworks.com/products/simulink-coder.html, accessed June 2023.
  • [13] https://docs.mosek.com/9.0/rmosek/index.html, accessed June 2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2911d3cb-50b7-4b6e-8881-281ec2e334d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.