PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effectiveness of fire detection with convolutional neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modeling the operation process of technical objects, especially complex and intelligent systems, is an important diagnostic problem. Such models are relevant when designing objects, making decisions regarding maintenance, and evaluating operation processes. A common assumption is that the model of the operation process can only record changes in states that occur over a finite period of time. In the traditional approach, when analyzing the number of possible different operating states of an object, a finite set of them is used. The model presented in this article allows analyzing a wide range of issues related to the operation process of complex technical objects. Using the probability functions of states and the readiness functions of a technical object, this model allows modeling the operation process at the initial design stage, assessing the compliance of the operation process of the object with the expected maintenance schedule, and assessing the potential results of the operation process of a complex technical object.
Rocznik
Tom
Strony
48--62
Opis fizyczny
Bibliogr. 15 poz., tab., rys., wykr.
Twórcy
  • Doctoral School of the Technical University of Koszalin, 2 Sniadeckich St., 75-620 Koszalin, Poland
  • Independent researcher
  • Department of Electromechanics and Rolling Stock of Railways, Kyiv Instiute of Railway Transport, State University of Infrastructure and Technologies, 04071 Kyiv, Ukraine
  • Academy of Applied Sciences in Walcz, 99 Wojska Polskiego St., 78-600 Walcz, Poland
  • Faculty of Electronics and Computer Science, Technical University of Koszalin, 2 Sniadeckich St., 75-620 Koszalin, Poland
Bibliografia
  • 1. Duer S. Assessment of the Operation Process of Wind Power Plant’s Equipment with the Use of an Artificial Neural Network. Energies, 2020, 13, 2437, doi:10.3390/en13102437.
  • 2. Duer S., Paś J., Hapka A., Duer R., Ostrowski A., Woźniak M.: Assessment of the Reliability of Wind Farm Devices in the Operation Process. Energies, 2022, 15, 3860, doi:10.3390/en15113860
  • 3. Nakagawa, T.; Ito, K. Optimal inspection policies for a storage system with degradation at periodic tests. Math. Comput. Model. 2000, 31, 191–195.
  • 4. Wang, Q.; He, Z.; Lin, S.; Liu, Y. Availability and Maintenance Modeling for GIS Equipment Served in High‐Speed Railway Under Incomplete Maintenance. IEEE Transactions on Power Delivery, Vol. 33, No. 5, 2018.
  • 5. Epstein, B.; Weissman, I. Mathematical Models for Systems Reliability; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2008.
  • 6. Dyduch, J.; Paś, J.; Rosiński, A. The Basic of the Exploitation of Transport Electronic Systems; Publishing House of Radom University of Technology: Radom, Poland, 2011.
  • 7. Nakagawa, T. Maintenance Theory of Reliability; Springer: London, UK, 2005.
  • 8. Siergiejczyk, M.; Paś, J.; Rosiński, A. Issue of reliability–exploitation evaluation of electronic transport systems used in the railway environment with consideration of electromagnetic interference. IET Intell. Transp. Syst. 2016, 10, 587–593. https://doi.org/10.1049/iet-its.2015.0183.
  • 9. Stawowy, M.; Rosinski, A.; Pas, J.; Klimczak, T.: Method of Estimating Uncertainty as a Way to Evaluate Continuity Quality of Power Supply in Hospital Devices; Published: Jan 2021 in Energies; DOI: 10.3390/EN14020486
  • 10. Siergiejczyk, M.; Rosiński, A. Analysis of power supply maintenance in transport telematics system. Solid State Phenom. 2014, 210, 14–19. https://doi.org/10.4028/www.scientific.net/SSP.210.14.
  • 11. Stawowy, M.; Olchowik, W.; Rosiński, A.; Dąbrowski, T. The Analysis and Modelling of the Quality of Information Acquired from Weather Station Sensors. Remote Sens. 2021, 13, 693. https://doi.org/10.3390/rs13040693.
  • 12. Paś, J.; Rosiński, A.; Chrzan, M.; Białek, K. Reliability-Operational Analysis of the LED Lighting Module Including Electromagnetic Interference. IEEE Trans. Electromagn. Compact. 2020, 62, 2747–2758. https://doi.org/10.1109/TEMC.2020.2987388.
  • 13. Dhillon, B.S. Applied Reliability and Quality, Fundamentals, Methods, and Procedures; Springer: London, UK, 2006; p. 186.
  • 14. Gubarevych, O., Duer, S., Melkonova, I., Woźniak, M., Paś, J., Stawowy, M., Rokosz, K., Zajkowski, K., Bernatowicz, D. Research and assessment of the reliability of railway transport systems with induction motors. Energies, 2023 , 16 (19), 6888; https://doi.org/10.3390/en16196888
  • 15. Woźniak, M., Duer, S., Zajkowski. K., Duer R. et. oth .. Analysis and assessment of the reliability of the operation process of a complex, diagnosed technical facility in 5-value logic. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych. № 4 (2023) https://doi.org/10.37105/iboa.189.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29114cd7-6edf-4b35-b7cf-16b4c5fc9bbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.