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1. INTRODUCTION

Borehole heat exchangers (BHE) are more and more commonly applied for recovering
energy from rock mass renewable sources and for rational heat managing in the heating/
cooling installations. BHE exploitation simulations can be either provided by mathematic
methods, included in examples [8, 9] or by carrying out tests at laboratory stands. BHEs
located in the Laboratory of Geoenergetics in Faculty of Drilling, Oil and Gas AGH Uni-
versity of Science and Technology are being used to conduct research in area of presented
interests [1].

A research on the efficiency of heat transfer in a coaxial borehole heat exchanger
is described in this paper. In recent times theme of adapting old or not used anymore oil
and gas wells is highly increased. The most important fact is that every deep well that is
being transferred into BHE has to be of centric construction. This is for minimizing of
pressure [7].

The objective of the study is to adjust the materials and the configuration of a vertical
borehole heat exchanger in such a way that the heat transfer processes can be analyzed.
A series of experimental measurements were performed for various capacities. Three various
pipe materials were used in the experiments: polyethylene (PE), polyvinylchloride (PVC),
polypropylene (PP) or a combination there of. The vertical borehole heat exchanger oper-
ated at the rock mass temperature. In laboratory conditions the rock mass heat source was
substituted with 4 heating blankets, 80 W each. The polyethylene and polyvinylchloride
pipes constituted flow channels in two zones. Their diameter differed depending on the ap-
plied combinations. The inner diameter of the heat exchanger equaled to 25.3 mm. The
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experiments were carried out continuously: the process was monitored and measurement
data collected. Each change in the flow intensity was related with the flow stabilization time.
At least 30 measurements were made for each assumed volumetric flow of a heat carrier.
Three temperature sensors were installed in the borehole heat exchanger; the flow was reg-
ulated with two valves.

The vertical borehole heat exchanger is usually used when the utility area is small and
when higher and steady temperature of the rock mass is available. The efficiency of heat
recovery is a function of supply temperature and flow losses, which causes the vertical bore-
hole heat exchanger to bring about higher heat gains.

Due to the way in which they were performed, vertical borehole heat exchangers can be
divided into [5]:

— U-type,
— concentric (Fig. 1).

a) b)

Fig. 1. Schematic of a U-type borehole heat exchanger (a) and coaxial (b) [6]

The measuring stand consists of three elements: vertical borehole heat exchanger
(Fig. 2), measuring apparatuses (temperature sensors and flow meter shown in scheme
on Figure 2) and a computer for recording results. The vertical borehole heat exchanger
consists of an external layer, i.e. housing protecting it against mechanical damaging, and
heating blankets at the steel pipe. The internal part of the laboratory model of the vertical
borehole heat exchanger (steel pipe) has a 25.3 mm inner diameter and 2.15 meter lenght
(Fig. 2). This was the place where various tube configurations were introduced for experi-
mental purposes. Three temperature sensors were disposed at the BHE inlet and outlet, and
one at its bottom.
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Fig. 2. Measuring stand — model of a vertical borehole heat exchanger and schematic of the stand:
1, 2, 3 — temperature sensors

2. CALCULATION ASSUMPTIONS

It is assumed that for Re < 2300 the flow is laminar, and for Re > 4000 the flow is tur-
bulent [2]. Within the range of (2300; 4000) the flow is transitory. The Reynolds number can
be calculated from the equation:

v-d,-p
u

Re=

(1

where:
v — average flow rate [m-s™'],
d, — hydraulic diameter [m],
1 — dynamic fluid viscosity coefficient [Pa-s],
p — fluid density [kg-m™].
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The notion of hydraulic diameter is defined as a quotient of fourfold annular space to
wetted perimeter, for annulus space it is:

dh = Din - dout (2)
where:

D, — internal diameter of a well (outside pipe) [m],
d  — outside diameter of internal column (inside pipe) [m].

oul

Amount of heat provided by the borehole heat exchanger is calculated from the equa-
tion:

Q=V-p-c, A3)

T,-T,

out

where:
V — flow rate of fluid in the model of borehole heat exchanger [m*-s™'],
p — density of fluid (heat carrier) [kg-m™],
c, — specific heat of fluid flowing through the borehole heat exchanger [J-kg™-K™],
T, — temperature of inflowing heat carrier [K],
T, — outflow temperature of a carrier flowing through the borehole heat exchanger [K].

3. CALCULATION METHODICS

Initially, the analyzed pipes (inner column) are calculated for flow conditions so that
a turbulent or transitional flow is obtained in the annular space between the pipe and the
borehole heat exchanger’s wall, and laminar flow inside the pipe (the lower range of flow
intensity). The upper range is obtained when a turbulent flow is obtained inside the pipe.

Measurements are performed for the obtained ranges as to obtain at least a 6-grade range
of flow intensity changes. A heat flow vs. flow intensity curve is plotted on the basis of the
obtained results (Fig. 5).

Calculation assumptions were made for the research. They resulted from the design of
the borehole heat exchanger, way in which the experiment was performed and the applied
medium (network, tap water) with the temperature 15°C:

— specific heat of water ¢ = 4186 J-kg™-K™,
— kinematic viscosity n=1.14-107° m*s!,
— water density p =999.2 kg'm™.
Flow intensity was analyzed for the 0 to 10 liters per minute for points, where the flow

was steady and even. Properties of materials used for performing insulating column in the
borehole heat exchanger’s model are listed in Table 1.

Table 1
Material of inner column data (according to its construction showed in Table 2)
Material Density [kg-m™] Heat conductivity [W-m™-K™]
PVC 1390 0.16
PR 920 0.22
PE 960 0.42
water 1000 0.58
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The design of a internal columns are presented in Figure 3 and Table 2. Configuration
A and B are based on a two-pipe inner column, whereas configuration C is a single-pipe

construction.

Table 2

Design of a laboratory model of a borehole heat exchanger — three configurations
(d , d,— outer and inner diameters, respectively, b — wall thickness)

Configuration C

Column of pipes Configuration A Configuration B

Outer layer Steel pipe, D_ = 25.3 mm

Flow channel in annular space

First layer
PE pipe d = 25.0 mm, PP pipe d = 22.0 mm, PP pipe d, = 22.0 mm,
Second layer b=2.0 mm b=3.0 mm b=34mm
Third layer Water Microfracture
PE pipe d,=20.0 mm, | PVC pipe d = 16.0 mm,
Fourth layer b=2.0 mm b=1.0 mm
Inside d=16.0 mm d,=14.0 mm
a) b) c)

Fig. 3. Structure of inner column: a) configuration A (two PE pipes);
b) configuration B (PP and PVT pipe); c¢) configuration C (single PP pipe)

The characteristic of analyzed flows is shown in Tables 3—5. The average flow rate and
the Reynolds number were determined based on the volume flow rate of the heat carrier.
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4. RESULTS OF THE MEASUREMENTS

Figure 4 contains the results of temperature measurements (A7) received by the heat
carrier. The dependence of heating capacity on the volume of the heat carrier flow rate is
presented in Figure 5. The heat capacity increase is observed only for the initial values of the
heat carrier flow rate. At higher values the capacity is even (stable) regardless of the type of
insulating column.

Fig. 4. Dependence of temperature difference of the heat carrier volume flow rate for all laboratory
BHEs design models

Fig. 5. Dependence of heat flow transmitted from the heat carrier volume for all laboratory
BHESs design models
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The energy efficiency peak for each conducted configuration is located in a transitory
flow regime. The transfer into the turbulent flow resulted in lower values for the heating
power. The instability in heat stream provided by laminar flow shows us that the flow regime
is not suited to exploitation regime projects of BHEs.

Owing to the character of the experiment we can assume that for each volume rate
a steady state was obtained for heat flow through the barrier in vertical borehole heat ex-
changer designs. For a few cylindrical layers differing in thickness and conductivity, the
following calculations can be made [2—4]:

0= 1,163.—(T”<‘> ) )

(1 d,
z(”)

mi

where:
O — heat rate [W],
F . — surface area of the layer [m’],
T, — temperature on the exterior layer [K],

r(

T,,., — temperature of layer closer to center [K],

A, — material thermal conductivity [W-m™""K™],
By transforming equation (4) we can calculate the successive temperatures at the border
of particular configurations. With the obtained results we can establish the course of heat flow
through the barrier.

5. CONCLUSIONS

1. Three various designs of insulating pipes were analyzed in a laboratory model of a con-
centric borehole heat exchanger. Experiments were performed for the heat carrier flow
rates from 0.2 dm*min~" to almost 10 dm*-min".

2. Figure 5 represents a dependence on heating capacity obtained in the BHE on the heat
carrier flow rate. The capacity increase was observed only for the initial range of heat
carrier flow rates. Optimum, taking into consideration each configuration of BHE was
around capacity 3.3-3.5 dm>m™. Increasing flow rate results in higher pressure losses,
without income in the efficiency of the heat stream (Fig. 5). At higher values of the
capacity was observed that the heating power is not being more effective, no matter the
type of insulating column used.

3. In configuration B, where PP and PVC pipes were used, the value of nearly 220 W was
obtained, at the flow rate 3.4 dm*min'. For configuration C, the heat transfer reached
a maximal level at a flow rate of 2.2 dm*min™'. At the higher flow rate values the sys-
tem turned out to be most steady. In each configuration capacity equals or higher than
3.6 dm*>min! is represented by a turbulent flow regime. Therefore optimization is ex-
pected before or at the beginning of the turbulent state, which was proven by the con-
ducted experiment.

4. Configuration A of BHE provides a free space between the pipes. This space is filled
with water. Despite such design, no heat exchange typical of counterflow was observed.
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5.

6.

More experiments should be performed using various materials to determine the optimal
configuration. Materials used in BHEs should not be the only aim for next research. An
important aspect in the area of heat transfer efficiency is also the flow rate in regards to
power transmitted to the BHEs from surroundings.

The measurement series consisted of 30 measurements made for each steady flow inten-
sity. The normal distribution of results stayed within the range one standard deviation
proving a high accuracy of equipment used in and the stability of the process itself.
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