PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Methyl Orange Dye by Modified Fly Ash-Based Geopolymer – Characterization, Performance, Kinetics and Isotherm Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geopolymer has been widely used as adsorbent for heavy metals and dyes. Modification on geopolymer surface with cationic surfactant can improve the anion exchange capacity of geopolymer. In this paper, fly ash-based geopolymer had been modified with cetyltrimethylammonium bromide (CTAB) which is cationic surfactant and applied as adsorbent of methyl orange (MO) anionic dye. Modified geopolymer had shown better performance as MO dye adsorbent compared to unmodified geopolymer. The adsorption of MO dye showed the best result at low pH and reached equilibrium after 90 minutes. On the basis of kinetics and isotherm studies, MO dye adsorption by modified geopolymer followed pseudo-second-order model and Langmuir model with maximum adsorption capacity of 19.231 mg∙g-1.
Rocznik
Strony
90--98
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
Bibliografia
  • 1. Al-Ghouti M.A., Al-Absi R.S. 2020. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Scientific Reports, 10, 15928.
  • 2. Amin M.T., Alazba A.A., Shafiq M. 2015. Adsorptive removal of Reactive Black 5 from wastewater using bentonite clay: Isotherms, kinetics and thermodynamics. Sustainability, 7, 15302–15318.
  • 3. Benjelloun M., Miyah Y., Evrendilek G.A., Zerrouq F., Lairini S. 2021. Recent advances in adsorption kinetic models: Their application to dye types. Arabian Journal of Chemistry, 14(4), 103031.
  • 4. Davidovits J. 2017. Geopolymers: Ceramic-like inorganic polymers. Journal of Ceramic Science and Technology, 8, 335–350.
  • 5. El Alouani M., Alehyen S., El Achouri M., Taibi M. 2019. Comparative studies on removal of textile dye onto geopolymeric adsorbents. EnvironmentAsia, 12(1), 143–153.
  • 6. Fernandes J.V., Rodrigues A.M., Menezes R.R., Neves G.A. 2020. Adsorption of anionic dye on the acid-functionalized bentonite. Materials, 13, 3600.
  • 7. Fumba G., Essomba J.S., Tagne G.M., Nsami J.N., Bélibi P.D.B., Mbadcam J.K. 2014. Equilibrium and kinetic adsorption studies of methyl orange from aqueous solutions using kaolinite, metakaolinite and activated geopolymer as low cost adsorbents. Journal of Academia and Industrial Research, 3(4), 156–163.
  • 8. Huang Z., Li Y., Chen W., Shi J., Zhang N., Wang X., Li Z., Gao L., Zhang Y. 2017. Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276.
  • 9. Iwuozor K.O, Ighalo J.O., Emenike E.C., Ogunfowora L.A., Igwegbe C.A. 2021. Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179.
  • 10. Khan M.I., Shanableh A., Elboughdiri N., Lashari M.H., Manzoor S., Shahida S., Farooq N, Bouazzi Y., Rejeb S., Elleuch Z., Kriaa K., Rehman A. 2022. Adsorption of methyl orange from an aqueous solution onto a BPPO-based anion exchange membrane. ACS Omega, 7, 26788–26799.
  • 11. Ma Q., Shen F., Lu X., Bao W., Ma H. 2013. Studies on the adsorption behavior of methyl orange from dye wastewater onto activated clay. Desalination and Water Treatment, 51(19–21), 3700–3709.
  • 12. Mahmoodi N.M., Banijamali M., Noroozi B. 2014. Surface modification and ternary system dye removal ability of manganese ferrite nanoparticle. Fibers and Polymers, 15(8), 1616–1626.
  • 13. Mobarak M., Selim A.Q., Mohamed E.A., Seliem M.K. 2018. A superior adsorbent of CTAB/H2O2 solution-modified organic carborich-clay for hexavalent chromium and methyl orange uptake from solutions. Journal of Molecular Liquids, 259, 384–397.
  • 14. Nizam N.U.M., Hanafiah M.M., Mahmoudi E., Halim A.A., Mohammad A.W. 2021. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Scientific Reports, 11, 8623.
  • 15. Purbasari A., Samadhi T.W., Bindar Y. 2018. The effect of alkaline activator types on strength and microstructural properties of geopolymer from co-combustion residuals of bamboo and kaolin. Indonesian Journal of Chemistry, 18(3), 397–402.
  • 16. Purbasari A., Ariyanti D., Sumardiono S., Shofa M.A., Manullang R.P. 2022. Comparison of alkali modified fly ash and alkali activated fly ash as Zn(II) ions adsorbent from aqueous solution. Science of Sintering, 54(1), 49–58.
  • 17. Potgieter J.H., Pardesi C., Pearson S. 2021. A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations. Environmental Geochemistry and Health, 43, 2539–2550.
  • 18. Robati D., Mirza B., Rajabi M., Moradi O., Tyagi I., Agarwal S., Gupta V.K. 2016. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chemical Engineering Journal, 284, 687–697.
  • 19. Samadhi T.W., Wulandari W., Prasetyo M.I., Fernando M.R., Purbasari A. 2017. Synthesis of geopolymer from biomass-coal ash blends. AIP Conference Proceedings, 1887, 020031.
  • 20. Selkala T., Suopajarvi T., Sirvio J.A., Luukkonen T., Kinnunen P., de Carvalho A.L.C.B., Liimatainen H. 2020. Surface modification of cured inorganic foams with cationic cellulose nanocrystals and their use as reactive filter media for anionic dye removal. ACS Applied Materials & Interfaces, 12, 27745–27757.
  • 21. Selvi S.S.T., Linet J.M., Sagadevan S. 2018. Influence of CTAB surfactant on structural and optical properties of CuS and CdS nanoparticles by hydrothermal route. Journal of Experimental Nanoscience, 13(1), 130–143.
  • 22. Siyal A.A., Shamsuddin M.R., Khan M.I., Rabat N.E., Zulfiqar M., Man Z., Siame J, Azizli K.A. 2018. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. Journal of Environmental Management, 224, 327–339.
  • 23. Wang J., Guo X. 2020. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279.
  • 24. Wu L., Liu X., Lv G., Zhu R., Tian L., Liu M., Li Y., Rao W., Liu T., Liao L. 2021. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with diferent structures. Scientific Reports, 11, 10640.
  • 25. Xu J., Li M., Zhao D., Zhong G., Sun Y., Hu X., Sun J., Li X., Zhu W., Li M., Zhang Z., Zhang Y., Zhao L., Zheng C., Sun X. 2022. Research and application progress of geopolymers in adsorption: A review. Nanomaterials, 12, 3002.
  • 26. Yu J., Zou A., He W., Liu B. 2020. Adsorption of mixed dye system with cetyltrimethylammonium bromide modified sepiolite: Characterization, performance, kinetics and thermodynamics. Water, 12, 981.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29090170-d0bb-4a92-9a64-5734bc91ae81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.