Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Języki publikacji
Abstrakty
Flood estimates based on stationary flood frequency models are commonly used as inputs to flood hazard mapping. However, changing flood characteristics caused by climate change necessitate more accurate assessments of the probabilities of rare flood events. This study aims to develop a flood hazard map based on the nonstationary flood frequency using a generalized extreme value distribution model for the Becho floodplain in the upper Awash River basin. The distributional location parameter was modeled as a function of rainfall amount of different durations, annual total precipitation from wet days, yearly mean maximum temperature and time as covariates. The one-dimensional Hydrological Engineering Center River Analysis System (HEC-RAS) hydraulic model with steady flow analysis was used to generate flood hazard map input, depth and velocity, and inundation extent for different return periods. The result indicated that the model as a function of rainfall, such as monthly rainfall (August) and annual wet day precipitation, provided the best fit to the observed hydrological data. Rainfall as a covariate can explain the variation in the peak flood series. The developed hazard map based on depth alone and the combination of depth and velocity thresholds resulted in more than 70% of the floodplain area being classified as a high hazard zone under 2, 25, 50, and 100-years return periods. The current study assists water resource managers in considering changing environmental factors and an alternative flood frequency model for developing flood hazard management and mitigation strategies.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1079--1095
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
- Faculty of Water Supply and Environmental Engineering, Arba Minch Water Technology Institute, Arba Minch University, PO. Box 21, Arba Minch, Ethiopia
- Department Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Srinivasnagar Surathkal, Mangalore, Karnataka 575025, India
autor
- Department Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Srinivasnagar Surathkal, Mangalore, Karnataka 575025, India
Bibliografia
- 1. Akaike AH (1974) New look at the statistical model identification.
- 2. IEEE Trans Automatic Control 19(6):716-723
- 3. Bertola M, Viglione A, Blöschl G (2019) Informed attribution of flood changes to decadal variation of atmospheric, catchment and river drivers in Upper Austria. J Hydrol 577:123919. https:// doi.org/10.1016/j.jhydrol.2019.123919
- 4. Billi P, Alemu YT, Ciampalini R (2015) Increased frequency of flash floods in Dire Dawa, Ethiopia: change in rainfall intensity or human impact? Nat Hazards 76:1373-1394. https://doi.org/10. 1007/s11069-014-1554-0
- 5. Binh LTH, Umamahesh NV, Rathnam EV (2019) High-resolution flood hazard mapping based on nonstationary frequency analysis: case study of Ho Chi Minh City, Vietnam. Hydrol Sci J 64:318-335. https://doi.org/10.1080/02626667.2019.1581363
- 6. Blöschl G, Hall J, Parajka J et al (2017) Changing climate shifts timing of European floods. Science 357(6351): 588-590. https:// doi.org/10.1126/science.aan2506
- 7. Blöschl G, Hall J, Viglione A et al (2019) Changing climate both increases and decreases European river floods. Nature 573:108111. https://doi.org/10.1038/s41586-019-1495-6
- 8. Bobée B, Cavadias G, Ashkar F et al (1993) Towards a systematic approach to comparing distributions used in flood frequency analysis. J Hydrol 142:121-136. https://doi.org/10.1016/0022-1694(93)90008-W
- 9. Chow V Te (1959) Open-channel hydraulics. McGraw-Hill, New York
- 10. Coles S (2001) An Introduction to Statistical Modeling of Extreme Values. Springer London, London
- 11. Costabile P, Costanzo C, Ferraro D et al (2020) Performances of the new HEC-RAS version 5 for 2-D Hydrodynamic-based rainfallrunoff simulations at Basin scale: comparison with a State-of-the Art Model. Water 12:2326. https://doi.org/10.3390/w12092326
- 12. Debele SE, Strupczewski WG, Bogdanowicz E (2017) A comparison of three approaches to nonstationary flood frequency analysis. Acta Geophys 65:863-883. https://doi.org/10.1007/s11600-017-0071-4
- 13. Desalegn H, Mulu A (2021) Mapping flood inundation areas using GIS and HEC-RAS model at Fetam River, Upper Abbay Basin, Ethiopia. Sci African 12:e00834. https://doi.org/10.1016/j.sciaf. 2021.e00834
- 14. Dysarz T, Wicher J, Mariusz D, Joanna S (2019) Analysis of extreme flow uncertainty impact on size of flood hazard zones for the Wronki gauge station in the Warta river. Acta Geophys 67:661676. https://doi.org/10.1007/s11600-019-00264-8
- 15. Erena SH, Worku H, De Paola F (2018) Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. J Hydrol Reg Stud 19:224-239. https://doi. org/10. 1016/j.ejrh.2018.09.005
- 16. Getahun Y, Gebre S (2015) Flood hazard assessment and mapping of flood inundation area of the Awash river basin in ethiopia using GIS and HEC-GeoRAS/HEC-RAS Model. J Civ Environ Eng 05. https://doi.org/10.4172/2165-784x.1000179
- 17. Gilleland E, Katz RW (2016) extRemes 2.0: An Extreme Value Analysis Package in R. J Stat Softw 72:. https://doi.org/10.18637/ jss.v072.i08
- 18. Gu X, Zhang Q, Singh VP et al (2017) Nonstationarity-based evaluation of flood risk in the Pearl River basin: changing patterns, causes and implications. Hydrol Sci J 62:246-258. https://doi. org/10.1080/02626667.2016.1183774
- 19. Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182-196. https:// doi.org/10.1016/S0022-1694(97)00125-X
- 20. Hesarkazzazi S, Arabzadeh R, Hajibabaei M et al (2021) Stationary vs nonstationary modelling of flood frequency distribution
- 21. across northwest England. Hydrol Sci J 66:729-744. https://doi. org/10.1080/02626667.2021.1884685
- 22. Jacob XK, Bisht DS, Chatterjee C, Raghuwanshi NS (2020) Hydrodynamic modeling for flood hazard assessment in a data scarce region: a case study of Bharathapuzha River Basin. Environ Model Assess 25:97-114. https://doi.org/10.1007/ s10666-019-09664-y
- 23. Jha MK, Afreen S (2020) Flooding urban landscapes: analysis using combined hydrodynamic and hydrologic modeling approaches. Water (Switzerland) 12. https://doi.org/10.3390/w12071986
- 24. Kendall M (1975) Rank correlation methods. Charles Griffin, London Kobierska F, Engeland K, Thorarinsdottir T (2018) Evaluation of design flood estimates—a case study for Norway. Hydrol Res 49:450-465. https://doi.org/10.2166/nh.2017.068
- 25. Kundzewicz ZW, Kanae S, Seneviratne SI et al (2014) Flood risk and climate change : global and regional perspectives Flood risk and climate change : global and regional perspectives. Hydrol Sci J - J des Sci Hydrol 59:1-28. https://doi.org/10.1080/02626667. 2013.857411
- 26. Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records—a review of the methodology. Hydrol Sci J 49:7-19. https://doi.org/10.1623/hysj.49.1.7.53993
- 27. Li J, Liu X, Chen F (2015) Evaluation of nonstationarity in annual maximum flood series and the associations with large-scale climate patterns and human activities. Water Resour Manag 29:1653-1668. https://doi.org/10.1007/s11269-014-0900-z
- 28. Liu S, Huang S, Huang Q et al (2017) Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: a case study in the Wei River Basin, China. J Hydrol 548:184-195. https://doi. org/10.1016/j.jhydrol.2017.03.012
- 29. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245. https://doi.org/10.2307/1907187
- 30. Melkamu T, Bagyaraj M, Adimaw M, et al (2022) Detecting and mapping flood inundation areas in Fogera-Dera Floodplain, Ethiopia during an extreme wet season using Sentinel-1 data. Phys Chem Earth 127:103189. https://doi.org/10.1016/j.pce.2022.103189
- 31. Milly PCD, Betancourt J, Falkenmark M, et al (2008) Climate change: Stationarity is dead: Whither water management? Science (80-)319:573-574. https://doi.org/10.1126/science.1151915
- 32. Namara WG, Damisse TA, Tufa FG (2022) Application of HEC-RAS and HEC-GeoRAS model for flood inundation mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Model Earth Syst Environ 8:1449-1460. https://doi.org/10.1007/s40808-021-01166-9
- 33. Opere AO, Mkhandi S, Willems P (2006) At site flood frequency analysis for the Nile Equatorial basins. Phys Chem Earth 31:919-927. https://doi.org/10.1016/j.pce.2006.08.018
- 34. Panahi A, Alijani B, Mohammadi H (2010) The effect of the land use/ cover changes on the Floods of the Madarsu Basin of Northeastern Iran. J Water Resour Prot 02:373-379. https://doi.org/10.4236/ jwarp.2010.24043
- 35. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126. https://doi.org/10.2307/2346729
- 36. Prosdocimi I, Kjeldsen TR, Svensson C (2014) Non-stationarity in annual and seasonal series of peak flow and precipitation in the UK. Nat Hazards Earth Syst Sci 14:1125-1144. https://doi.org/ 10.5194/nhess-14-1125-2014
- 37. Rangari VA, Umamahesh N V., Patel AK (2021) Flood-hazard risk classification and mapping for urban catchment under different climate change scenarios: a case study of Hyderabad city. Urban Clim 36:100793. https://doi.org/10.1016/j.uclim.2021.100793
- 38. Robi MA, Abebe A, Pingale SM (2019) Flood hazard mapping under a climate change scenario in a Ribb catchment of Blue Nile River basin, Ethiopia. Appl Geomatics 11:147-160. https://doi.org/10. 1007/s12518-018-0249-8
- 39. Roy B, Khan MSM, Islam AKMS et al (2021) Climate-induced flood inundation for the Arial Khan River of Bangladesh using opensource SWAT and HEC-RAS model for RCP8.5-SSP5 scenario. SN Appl Sci 3. https://doi.org/10.1007/s42452-021-04460-4
- 40. Salas JD, Obeysekera J (2014) Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J Hydrol Eng 19:554-568. https://doi.org/10.1061/(ASCE)HE.1943-5584. 0000820
- 41. Smith GP, Davey EK, Cox RJ (2014) Flood hazard. Water Res Lab Tech Rep 7:17
- 42. Šraj M, Viglione A, Parajka J, Blöschl G (2016) The influence of nonstationarity in extreme hydrological events on flood frequency estimation. J Hydrol Hydromech 64:426-437. https://doi.org/10. 1515/johh-2016-0032
- 43. Šraj M, Bezak N (2020) Comparison of time trend- and precipitation-informed models for assessing design discharges in variable climate. J Hydrol 589. https://doi.org/10.1016/j.jhydrol.2020.125374
- 44. Tabari H (2020) Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 10:1-10. https://doi. org/10.1038/s41598-020-70816-2
- 45. Tola SY, Shetty A (2022) Flood susceptibility modeling based on morphometric parameters in Upper Awash River basin, Ethiopia using geospatial techniques. Sustain Water Resour Manag 8. https://doi. org/10.1007/s40899-022-00642-z
- 46. Vasconcellos SM, Kobiyama M, Dagostin FS et al (2021) Flood hazard mapping in Alluvial fans with computational modeling. Water Resour Manag 35:1463-1478. https://doi.org/10.1007/ s11269-021-02794-7
- 47. Von Storch H, Navarra A (1995) Analysis of Climate Variability. Springer-Verlag, New York
Identyfikator YADDA
bwmeta1.element.baztech-29081ebc-6b92-447a-9682-3302de9fad3b