PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method for Assessing Reliability of the Power Supply System for Electronic Security Systems of Intelligent Buildings Taking Into Account External Natural Interference

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents issues related to the reliability of power supply for electronic security devices in intelligent buildings. These systems function under varied environmental conditions and are exposed to external or internal natural and artificial interference; lightning, in particular. The authors conducted actual experimental tests of two surge arresters that are used to protect against a lightning impulse. As a result of conducted tests, followed by reliability and operational modelling, it was concluded that their use in internal connection structures increased the probability of a system staying in a state of full fitness. All of the deliberations included in the article enabled developing a new method for assessing the power supply continuity in electronic security systems of intelligent buildings, taking into account external natural interference. This method can also be applied to assess the power supply continuity in other electronic systems and devices.
Rocznik
Strony
art. no. 176375
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Department of Air Transport Engineering and Teleinformatics, Faculty of Transport, Warsaw University of Technology, Poland
autor
  • Faculty of Electronic, Military University of Technology, Poland
  • Signalling and Telecommunication Laboratory, Railway Research Institute, Poland
  • Signalling and Telecommunication Laboratory, Railway Research Institute, Poland
Bibliografia
  • 1. Fischer R.J., Halibozek E.P., Walters D.C. Introduction to Security. Butterworth-Heinemann, 2019. https://doi.org/10.1016/C2015-0-04068-0
  • 2. Kierzkowski A., Kisiel T. Simulation model of security control system functioning: A case study of the Wroclaw Airport terminal. Journal of Air Transport Management,64 (B), 173-185 (2016). https://doi.org/10.1016/j.jairtraman.2016.09.008
  • 3. Kierzkowski A., Kisiel T., Uchroński P.: Simulation Model of Airport Security Lanes with Power Consumption Estimation. Energies, 14, 6725, 2021. https://doi.org/10.3390/en14206725
  • 4. Lewandowski J., Młynarski S., Pilch R., Smolnik M., Szybka J., Wiązania G.: An evaluation method of preventive renewal strategies of railway vehicles selected parts. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 23 (4), 2021. https://doi.org/10.17531/ein.2021.4.10
  • 5. Hu X., Zhou S., Chen T., Ghiasi M. Optimal energy management of a DC power traction system in an urban electric railway network with dogleg method, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, DOI: 10.1080/15567036.2021.1877373
  • 6. Kochan A., Daszczuk W. B., Grabski W., Karolak, J. Formal Verification of the European Train Control System (ETCS) for BetterEnergy Efficiency Using a Timed and Asynchronous Model. Energies, 16, 8, 2023. https://doi.org/10.3390/en16083602
  • 7. Jacyna M., Szczepański E., Izdebski M., Jasiński, S., Maciejewski M. Characteristics of event recorders in Automatic Train Control systems. Archives of Transport, 2018, 46, 61–70, doi:10.5604/01.3001.0012.2103.
  • 8. Kukulski J., Jacyna M., Gołębiowski P. Finite Element Method in Assessing Strength Properties of a Railway Surface and Its Elements. Symmetry, 11, 1014, 2019. DOI: 10.3390/sym11081014
  • 9. Klimczak T., Paś, J. Selected issues of the reliability and operational assessment of a fire alarm system. Eksploatacja i Niezawodnosc –Maintenance and Reliability, 21(4), 553–561, 2019. DOI: 10.17531/ein.2019.4.3.
  • 10. Perka B. The dissipation of electricity in electric cables under the influence of fire temperatures. Przegląd Elektrotechniczny, t. 97, 6, 2021, s. 105–108, https://doi.org/10.15199/48.2021.06.19
  • 11. Ott H. W. Electromagnetic compatibility engineering. Wiley. 2009.http://dx.doi.org/10.1002/9780470508510
  • 12. Si T., Xie S., Ji Z., Ma C., Wu Z., Wu J., Wang J. Synergistic effects of carbon black and steel fibers on electromagnetic wave shielding and mechanical properties of graphite/cement composites. Journal of Building Engineering, 45, 2022. https://doi.org/10.1016/j.jobe.2021.103561
  • 13. Smolenski R., Lezynski P., Bojarski J., Drozdz W., Choon Long L. Electromagnetic compatibility assessment in multiconverter power systems –Conducted interference issues. Measurement, vol. 165, pp. 108119, 2020. https://doi.org/10.1016/j.measurement.2020.108119
  • 14. Paś J., Rosiński A., Białek K. A reliability-operational analysis of a track-side CCTV cabinet taking into account interference. Bulletin of the Polish Academy of Sciences-Technical Sciences, vol. 69(2), 2021, Article number: e136747. pp. 1-11. https://doi.org/10.24425/bpasts.2021.136747
  • 15. Paś J., Klimczak T., Rosiński A., Stawowy M. The Analysis of the Operational Process of a Complex Fire Alarm System Used in Transport Facilities. Building Simulation, vol. 15, issue 4, 2022. https://doi.org/10.1007/s12273-021-0790-y
  • 16. Pas J., Rosinski A., Chrzan M., Bialek K. Reliability-operational analysis of the LED lighting module including electromagnetic interference. IEEE Trans. Electromagn. Compat.2020, 62,2747–275, doi:10.1109/temc.2020.2987388
  • 17. Khraisat A., Alazab A. A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity, 4, 18, 2021. https://doi.org/10.1186/s42400-021-00077-7
  • 18. Polak R., Laskowski, D., Matyszkiel R., Łubkowski P., Konieczny Ł., Burdzik R. Optimizing the Data Flow in a Network Communication between Railway Nodes. In Research Methods and Solutions to Current Transport Problems; Siergiejczyk, M., Krzykowska, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 351–362. DOI: 10.1007/978-3-030-27687-4_35.
  • 19. Yan H., Ma L., Zhao T., Zhang J. Research on repair method of abnormal energy consumption data of lighting and plug based on similar features. Energy and Buildings, vol. 268, 2022. https://doi.org/10.1016/j.enbuild.2022.112155
  • 20. Ma L., Huang Y., Zhao T. A synchronous prediction method for hourly energy consumption of abnormal monitoring branch based onthe data-driven. . Energy and Buildings, vol. 260, 2022. https://doi.org/10.1016/j.enbuild.2022.111940
  • 21. Nucci C.A., Borghetti A., Napolitano F., Tossani F. Basics of Power Systems Analysis. In: Papailiou K.O. (eds) Springer Handbook of Power Systems. Springer Handbooks. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-32-9938-2_5
  • 22. Sueta H.E., Santos S.R., Altafim R.A.C. Protection of Low-Voltage Equipment and Systems. In: Gomes C. (eds) Lightning. Lecture Notes in Electrical Engineering, vol 780. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-3440-6_5
  • 23. Li, J. (Ed.) Overvoltage Mechanisms in Power Systems. In Measurement and Analysis of Overvoltages in Power Systems, 2018. DOI: 10.1002/9781119129035
  • 24. Rudyk Y., Kuts V., Nazarovets O., Zdeb V. Complex Tools for Surge Process Analysis and Hardware Disturbance Protection. In: Ageyev D., Radivilova T., Kryvinska N. (eds) Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, vol 69. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-71892-3_9
  • 25. Alias W.N.H.A., Sujod M.Z., Kamari N.A.M. DC-Link Protection for Grid-Connected Photovoltaic System: A Review. In: Kasruddin Nasir A.N. et al. (eds) In: ECCE2019. Lecture Notes in Electrical Engineering, vol 632. Springer, Singapore, 2020. https://doi.org/10.1007/978-981-15-2317-5_61
  • 26. Jin T., Yu Y., Elsayed E. Reliability and quality control for distributed wind/solar energy integration: a multi-criteria approach, IIE Transactions, 47:10, 1122-1138, 2015, DOI: 10.1080/0740817X.2015.1009199
  • 27. Gupta N., Dogra R., Garg R., Kumar P. Review of islanding detection schemes for utility interactive solar photovoltaic systems, International Journal of Green Energy, 2021, DOI: 10.1080/15435075.2021.1941048
  • 28. Hashemi S., Østergaard J. Methods and strategies for overvoltage prevention in low voltage distribution systems with PV. IET Renewable Power Generation, 11: 205-214, 2017. https://doi.org/10.1049/iet-rpg.2016.0277
  • 29. Pawar P., TarunKumar M., Vittal P.K. An IoT based Intelligent Smart Energy Management System with accurate forecasting and load strategy for renewable generation. Measurement, vol. 152, pp. 107187, 2020, https://doi.org/10.1016/j.measurement.2019.107187
  • 30. Duer S. Assessment of the operation process of wind power plant’s equipment with the use of an artificial neural network. Energies,2020, 13, 2437, doi:10.3390/en13102437
  • 31. Memon A.A., Laaksonen H., Kauhaniemi K. Microgrid Protection with Conventional and Adaptive Protection Schemes. In: Anvari-Moghaddam A., Abdi H., Mohammadi-Ivatloo B., Hatziargyriou N. (eds) Microgrids. Power Systems. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-59750-4_19
  • 32. Rock M. Protection of Selected Cases: PV Systems, Wind Turbines and Railway Systems. In: Gomes C. (eds) Lightning. Lecture Notes in Electrical Engineering, vol 780. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-3440-6_7
  • 33. Azghandi, M.A., Barakati, S.M. A Temporary Overvoltages Mitigation Strategy for Grid-Connected Photovoltaic Systems Based on Current-Source Inverters. Iran J Sci Technol Trans Electr Eng44, 1253–1262, 2020. https://doi.org/10.1007/s40998-019-00291-7
  • 34. Sasi Kumar G., Radhika G., Ravi Kumar D. Reduction of Over Current and Over Voltage Under Fault Condition Using an Active SFCL with DG Units. In: Baredar P.V., Tangellapalli S., Solanki C.S. (eds) Advances in Clean Energy Technologies. Springer Proceedingsin Energy. Springer, Singapor, 2021. https://doi.org/10.1007/978-981-16-0235-1_54
  • 35. Chetty L., Singh Y. Reliability Assessment of High Voltage Direct Current Grid Protection Schemes. Quality and Reliability Engineering International, 30, pages 1461–1472, 2014, https://doi.org/10.1002/qre.1568
  • 36. El-kordy M., El-fergany A., Gawad A.F.A. Various Metaheuristic-Based Algorithms for Optimal Relay Coordination: Review and Prospective. Arch Computat Methods Eng, 28, 3621–3629, 2021. https://doi.org/10.1007/s11831-020-09516-z
  • 37. Aniserowicz K. Analysis of Electromagnetic Compatibility Problems in Extensive Objects under Lightning Threat, Bialystok University of Technology, Białystok 2005.
  • 38. IEC 61662:1995. Assessment of the Risk of Damage Due to Lightning.
  • 39. Bednarek M., Dąbrowski T., Olchowik W. Selected practical aspects of communication diagnosis in the industrial network. J. KONBiN 2019, 49, 383–404. DOI: 10.2478/jok-2019-0020. https://doi.org/10.2478/jok-2019-0020
  • 40. Piersanti S., Orlandi A., Paulis de F. Electromagnetic absorbing materials design by optimization using a machine learning approach. IEEE Transactions on Electromagnetic Compatibility, pp. 1–8, 2018, DOI: 10.1109/TEMC.2018.2871879.
  • 41. Cao M.-Q., Liu T.-T., Zhu Y.-H., Shu J.-C., Cao M.-S. Developing electromagnetic functional materials for green building. Journal of Building Engineering, 45, 2022. https://doi.org/10.1016/j.jobe.2021.103496
  • 42. Park G., Kim S., Park G.-K., Lee N. Influence of carbon fiber on the electromagnetic shielding effectiveness of high-performance fiber-reinforced cementitious composites. Journal of Building Engineering, 35, 2021. https://doi.org/10.1016/j.jobe.2020.101982
  • 43. Skuza A., Ziemianek S., Suproniuk M. Power System Division—Certain Issues Associated with Shaping Commutation Strategies in Power Substations. Energies, 15, 9, 2022:7293. https://doi.org/10.3390/en15197293
  • 44. Marchel P., Paska J., Pawlak K., Zagrajek K. A practical approach to optimal strategies of electricity contracting from Hybrid Power Sources. Bulletin of the Polish Academy of Sciences, Technical Sciences, 68, 1543–1551, 2020. https://doi.org/10.24425/bpasts.2020.135377
  • 45. PN-EN 61000-4-5:2014. Electromagnetic compatibility (EMC) -Part 4-5: Testing and measurement techniques -Surge immunity test.
  • 46. Borucka A. Maintaining technical readiness in the context of military exploitation systems. Bulletin of the Polish Academy ofSciences, Technical Sciences, 71, 5, 2023. https://doi.org/10.24425/bpasts.2023.146619
  • 47. Kozłowski E., Borucka A., Oleszczuk P., Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(4). https://doi.org/10.17531/ein/172857
  • 48. Andrych-Zalewska M., Chlopek Z., Pielecha J., Merkisz J. Investigation of exhaust emissions from the gasoline engine of a light duty vehicle in the Real Driving Emissions test. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(2). https://doi.org/10.17531/ein/165880
  • 49. Sawczuk W., Merkisz-Guranowska A., Rilo Cañás A., Kołodziejski S. New approach to brake pad wear modelling based on test stand friction-mechanical investigations. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(3):3. https://doi.org/10.17531/ein.2022.3.3
  • 50. Yuan P., Pu Y., Liu C. Improving electricity supply reliability in China: Cost and incentive regulation. Energy, vol. 237, 2021. https://doi.org/10.1016/j.energy.2021.121558
  • 51. Billinton R., Allan R. N. Reliability evaluation of power systems. New York: Plenum Press, 1996. https://doi.org/10.1007/978-1-4899-1860-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2900053e-8b01-4c34-97f2-aca37e823704
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.