PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineral movement simulation through the grates and pulp lifter in a SAG mill and evaluation for a new grate design using DEM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays computer simulations have been shown to be powerful tools to understand the performance of systems where we have mathematical models that can capture the physics of the problem. In this paper we attempt to simulate the behavior of the particles that move inside a large- scale mine mill, specifically through the grates and the discharge ducts of the material, when small changes are made in the geometry of the grates. Basically, the continuity, energy and momentum conservation equations are the ones that can solve the behavior of the material in that zone. The discrete element method is used to carry out the simulation, under the hypothesis that the restitution coefficient can substitute for the presence of the fluid inside the mill, and that by changing the angle of inclination of the grate slots the performance can improve the classification that they make and in the total discharge flow. A corollary of this study is that the pulp-lifters have a greater impact than the grates in improving the discharge flow. It was possible to quantify phenomena like flow-back and carry-over, effects that are not evaluable experimentally, in this way showing the usefulness of this simulation. The application of the DOE method has allowed to back up statistically the results and indicate that the slot angle increases the mill’s outlet flow.
Słowa kluczowe
Rocznik
Strony
617--630
Opis fizyczny
Bibliogr. 24 poz., rys. kolor.
Twórcy
  • Universidad de Santiago de Chile, Alameda Bernardo Ohiggins 3363, Departamento de Ingenieria Mecanica, 9170022 Santiago, Chile
Bibliografia
  • AGUILAR-CORONA A., ZENIT R., MASBERNAT O., 2011. Collision in a liquid fluidized bed. International Journal of Multiphase Flow, Volume 37, 695-705.
  • CLEARY P.W. MORRISON R.D., 2016. Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills. Minerals Engineering, Volume 86, 75-95.
  • THORNTON C., 2015. Granular Dynamics, Contact Mechanics and Particle System Simulations. A DEM study. Particle Technology Series, Volume 24.
  • CRUGUER B., SALIKOV V., HEINRICH S., ANTONYUK S., SUTKAR V. S., DEEN N. G., KUIPERS J. A. M., 2016, Coefficient of restitution for particles impacting on wet surfaces: An improved experimental approach. Particuology, Volume 25, 1-9.
  • DELANEY G. W., CLEARY P. W., MORRISON R. D., CUMMINS S., LOVEDAY B., 2013. Predicting breakage and the evolution of rock size and shape distributions in AG and SAG mills using DEM. Minerals Engineering, Volume 50-51, 132-139.
  • DJORDJEVIC N. SHI F. N., MORRISON, R., 2004. Determination of lifter design, speed and filling effects in a AG mills by 3D DEM. Minerals Engineering, Volume 17,1135-1142.
  • GUTIERREZ A., GUICHOU J., 2014. Computational simulation of fracture of materials in comminution devices. Minerals Engineering 61, 73–81.
  • JOHNSON K. L. 1987. Contact Mechanics. Cambridge University Press
  • LEGENDRE D., DANIEL C., GUIRAUD P., 2006. A note on modeling of the boucing of spherical drops or solid spheres on a wall in viscous fluid. Chemical Engineering Science, Volume 61, 3543-3549.
  • MARINACKJR M. C., VENKATA K. JASTI, YOUNG EUN CHOI, C. FRED HIGGS III, 2011. Couette grain flow experiments: The effects of coefficient of restitution, global solid fraction, and materials. Powder Technology, Volume 211, 144-155.
  • MISHRA B.K., RAJAMANI R. K., 1994. Simulation of charge motion in ball mills. Part 2: numerical simulations. International Journal of Mineral Processing, Volume 40, , 187-197.
  • MISHRA B.K., MURTY C.V.R., 2001. On the determination of contact parameters for realistic DEM simulations of ball mills. Powder Technology, Volume 115, Issue 3, 30, 290-297.
  • MISHRA B.K., RAJAMANI R. K. 1992. The Discrete Element Method for the Simulation of ball mills. Applied Mathematical Modelling, Volume 16, 598-604.
  • MORRISON R. D., CLEARY P. W., 2008. Towars a virtual conminution machine. Minerals Engineering, Volume 21, Issue 11, 770-781.
  • MULLER PETER, RONNY BOTTCHER, ALEXANDER RUSSELL, MICHAEL TRUE, SERGEJ AMAN, JURGEN TOMAS, 2016, Contact time at impact of spheres on large thin plates. Advanced Powder Technology. Volume 27, T 1233-1243.
  • OWEN P., CLEARY P. W., 2015. The relationship between charge shape characteristics and fill level and lifter height for a SAG mil. Minerals Engineering, Volume 83, 19-32.
  • RASOUL PANJIPOUR, KIANOUSH BARANI. 2018. The effect of ball size distribution on power draw, charge motion and breakage mechanism of tumbling ball mill by discrete element method (DEM) simulation. Physicochem. Probl. Miner. Process., 54(2), 258-269.
  • POWELL M.S., MCBRIDE A.T., 2006. What is required from DEM simulations to model breakage in mills? Minerals Engineering, Volume 19, 1013-1021.
  • RAJAMANI R.K., MISHRA B.K., VENUGOPAL R., DATTA A., 2000. Discrete element analysis of tumbling mills. Powder Technology, Volume 109, Issues 1–3, 105-112.
  • REZAEIZADEH M., FOOLADI M., POWELL M. S., MANSOURI S. H., WEERASEKARA N.S., 2010. A new predictive model of lifter bar wear in mills. Minerals Engineering, Volume 23, 1174-1181.
  • SINNOT M. D., CLEARY P.W., MORRISON R.D. 2017, Combined DEM and SPH simulation of overflow ball mill discharge and trammel flow, Minerals Engineering, Volume 108, 93-108.
  • WEERASEKARA N.S., POWELL M.S., CLEARY P.W., TAVARES L.M., CARVALHO R.M., 2013. The contribution of DEM to the science of comminution. Powder Technology, Volume 248, 3-24.
  • XIALEI BIAN, GUOQUIANG WANG, HONGDI WANG, SHUAI WANG, WEIDONG LV., 2017. Effect of lifter and mill speed on particle behavior, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Minerals Engineering, Volume 105, 22-35.
  • YAHYSEI M., S. BANISI., 2010. Spreadsheet-based modeling of linear wear impact on charge motion in tumbling mills. Minerals Engineering, Volume 23, 1213-1219.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28fde355-a74d-45a9-87fc-bbbaa6af596f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.