PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of heat exchange in the energy-efficient exterior wall of a passive house

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research thoroughly examines the unique characteristics of heat exchange in the energy-efficient external wall of a passive house. With a growing emphasis on sustainability and energy-efficient construction, passive houses have gained significant attention. The external wall, specifically in the form of a Trombe wall, plays a crucial role in maintaining thermal comfort while minimizing energy consumption. This article explores the intricacies of heat exchange in the Trombe Wall, considering factors such as solar radiation influence and modeling strategies. Through physical modeling and analytical investigations, the study delves into how these factors impact heat exchange and overall energy efficiency. The conclusions drawn provide valuable insights to architects, engineers, and construction professionals engaged in designing and implementing energy-efficient building envelopes. Understanding the nuances of heat exchange within the context of passive houses is vital for achieving optimal thermal efficiency and enhancing sustainable development in modern construction practices.
Rocznik
Tom
Strony
143--153
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1. Alqaed, S. (2022) Effect of using a solar hot air collector installed on the inclined roof of a building for cooling and heating system in the presence of polymeric PCM. Sustainable Energy Technologies and Assessments, 50, 101852, DOI: 10.1016/j.seta.2021.101852.
  • 2. Ataş, S., Ceylan, I. & Timar, O.E. (2023) Designing of energy saving system with heat recovery and solar air collector. Sustainable Energy Technologies and Assessments, 57, 103167, DOI: 10.1016/ j.seta.2023.103167.
  • 3. Bai, Y., Long, T., Li, W., Li, Y., Liu, S., Wang, Z., Lu, J. & Huang, S. (2022) Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter. Renewable Energy, 193, 1001-1018, DOI: 10.1016/j.renene .2022.05.076.
  • 4. Bevilacqua, P., Bruno, R., Szyszka, J., Cirone, D. & Rollo, A. (2023) Summer and winter performance of an innovative concept of Trombe wall for residential buildings. Energy, 258, 124798, DOI: 10.1016/j.energy.2022.124798.
  • 5. Borah, A., Mehta, S.K. & Pati, S. (2023) Analysis of conjugate heat transfer for forced convective flow through wavy minichannel. International Journal of Numerical Methods for Heat & Fluid Flow, 33, 1, 174-203. DOI: 10.1108/HFF-01-2022-0031.
  • 6. Chen, H., Liu, S., Eftekhari, M., Li, Y., Ji, W. & Shen,Y. (2022) Experimental studies on the energy performance of a novel wavy-shape Trombe wall. Journal of Building Engineering, 61, 105242, DOI: 10.1016/j.jobe.2022.105242.
  • 7. Delač, B., Pavković, B., Lenić, K. & Mađerić, D. (2022) Integrated optimization of the building envelope and the HVAC system in nZEB refurbishment. Applied Thermal Engineering, 211, 118442, DOI: 10.1016/j.applthermaleng.2022.118442.
  • 8. Elsaid, A.M., Hashem, F.A., Mohamed, H.A. & Ahmed, M.S. (2023) The energy savings achieved by various Trombe solar wall enhancement techniques for heating and cooling applications: A detailed review. Solar Energy Materials and Solar Cells, 254, 112228, DOI: 10.1016/j.solmat.2023.112228.
  • 9. Guan, J., Huang, K., Xu, J., Feng, G. & Song, J. (20230 Performance of a collector-storage solar air heating system for building mechanical ventilation preheating in the cold area. Energy and Built Environment, 4(6), 639-652. DOI: 10.1016/j.enbenv.2022.06.003.
  • 10. Guo, S.-r., Jiang, X.-ch, Jia, Y-h, Xiang, M.-l, Liao, Y.-x, Zhang, W.-t., Huang, R.-y & Long, E.-s (2023) Experimental and numerical study on indoor thermal environment of solar Trombe walls with different air-channel thicknesses in plateau, International Journal of Thermal Sciences, 193, 108469, DOI: 10.1016/j.ijthermalsci.2023.108469.
  • 11. He, Z., Ma, H., Lu, S. & Sun, Y. (2022) Research on the thermal performance of interlayer ventilated PCM component coupled with solar air collector. Energy and Buildings, 255, 111698, DOI: 10.1016/ j.enbuild.2021.111698.
  • 12. Huang, K., Xu, J., Guan, J., Feng, G. & Liu, X. (2023). Optimization of a collector-storage solar air heating system for building heat recovery ventilation preheating in the cold area. Energy and Buildings, 284, 112875. DOI:10.1016/j.enbuild.2023.112875.
  • 13. Ibrahim, A.K., Algburi, S. & Ahmed, O.K. (2023) Enhancement of the performance of the PV Trombe Wall: A short review. Cleaner Engineering and Technology, 14, 100652, DOI: 10.1016/j.clet.2023 .100652.
  • 14. Li, J., Qu, Ch., Li C., Liu, X. & Novakovic, V. (2022a) Technical and economic performance analysis of large flat plate solar collector coupled air source heat pump heating system. Energy and Buildings, 277, 112564, DOI: 10.1016/j.enbuild.2022.112564.
  • 15. Li, J., Zhang, Y., Zhu, Z., Zhu, J., Luo, J., Peng, F. & Sun, X. (2022b) Thermal comfort in a building with Trombe wall integrated with phase change materials in hot summer and cold winter region without air conditioning. Energy and Built Environment, 5, 1, DOI: 10.1016/j.enbenv.2022.07.007.
  • 16. Li, N., Gu, T., Li, Y., Liu, X., Ji, J. & Yu, B. (2023) The performance investigation on a multifunctional wall with photo-thermal catalytic blinds for heating, shading and formaldehyde removal. Energy, 279, 127996, DOI: 10.1016/j.energy.2023.127996.
  • 17. Liang, Y., Janorschke, M. & Hayes, C.E. (2022) Low-cost solar collectors to pre-heat ventilation air in broiler houses. Energies, 15, 1468. DOI: 0.3390/en15041468.
  • 18. Long, T., Zhao, N., Li, W., Shen W., Li, Y., Lu, J., Huang, S. & Qiao, Z. (2022) Natural ventilation performance of solar chimney with and without earth-air heat exchanger during transition seasons. Energy, 250, 123818, DOI: 10.1016/j.energy.2022.123818.
  • 19. Luo, X., Yu, T. & Lei, B. (2023). Experimental investigation on the heat transfer performance of ventilated floor with the influence of solar radiation. Applied Thermal Engineering, 229. DOI:10.1016/ j.applthermaleng.2023.120551.
  • 20. Mokni, A., Lashin, A., Ammar, M. & Mhiri, H. (2022) Thermal analysis of a Trombe wall in various climatic conditions: An experimental study. Solar Energy, 243, 247-263, DOI: 10.1016/j.solener.2022 .08.011.
  • 21. Shapoval, S., Shapoval, P., Zhelykh, V., Pona, O., Spodyniuk, N., Gulai, B., Savchenko, O. & Myro- niuk, K. (2017) Ecological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry and Chemical Technology, 11(4), 503-508, DOI: 10.23939/chcht11.04.503.
  • 22. Shapoval, S., Spodyniuk, N., Zhelykh, V., Shepitchak, V. & Shapoval, P. (2021) Application of rooftop solar panels with coolant natural circulation. Pollack Periodica, 16(1), 132-137 DOI: 10.1556/ 606.2020.00218.
  • 23. Shapoval, S., Zhelykh, V., Spodyniuk, N., Dzeryn, O. & Gulai, B. (2019) The effectiveness to use the distribution manifold in the construction of the solar wall for the conditions of circulation. Pollack Periodica, 14(2), 143-154, DOI: 10.1556/606.2019.14.2.13.
  • 24. Szuba, B. (2023) A thermo-circulating heating structure utilizing air circulation to heat architectural objects. Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 12, 51-62, DOI: 10.17512/ bozpe.2023.12.06.
  • 25. Teodosiu, C.I., Sima, C., Croitoru, C. & Bode, F. (2022) Experimental investigation and optimization of a glazed transpired solar collector. Applied Sciences, 12(22), 11392, DOI: 10.3390/app122211392.
  • 26. Ulewicz, M., Zhelykh, V., Kozak, K. & Furdas, Y. (2022) Application of thermosiphon solar collectors for ventilation of premises. Lecture Notes in Civil Engineering, 47, 180-187, DOI: 10.1007/978-3-030 -27011-7_23.
  • 27. Venhryn, I., Shapoval, S., Zhelykh, V. & Gulai, B. (2023) Experimental studies of energy efficiency of a thermal photovoltaic hybrid solar collector under the influence of wind flow. Lecture Notes in Civil Engineering, 290, 424-431, DOI: 10.1007/978-3-031-14141-6_43.
  • 28. Wang, Y., Boulic, M., Phipps, R., Plagmann, M., Cunningham, Ch. & Guyot, G. (2023) Field performance of a solar air heater used for space heating and ventilation – A case study in New Zealand primary schools. Journal of Building Engineering, 76, 106802, DOI:10.1016/j.jobe.2023.106802.
  • 29. Wu, S.-Y., Wu, L.-F. & Xiao, L. (2023) Effects of aspect ratio and inlet wind velocity on thermal characteristics of Trombe wall channel under different ventilation strategies: An indoor experiment. Experimental Thermal and Fluid Science, 141, 110800, DOI: 10.1016/j.expthermflusci.2022.110800.
  • 30. Xiao, L., Qin, L.-L. & Wu S.-Y. (2022) Proposal and application of comprehensive thermal comfort evaluation model in heating seasons for buildings with solar Trombe wall. Applied Thermal Engineering, 213, 118774, DOI: 10.1016/j.applthermaleng.2022.118774.
  • 31. Xiao, Y., Zhang, T., Liu, Z. & Fukuda, H. (2023) Thermal performance study of low-e glass Trombe wall assisted with the temperature-controlled ventilation system in hot-summer/cold-winter zone of China. Case Studies in Thermal Engineering, 5, 102882, DOI: 10.1016/j.csite.2023.102882.
  • 32. Xu, B., Gan, W.-t., Wang, Y-l., Chen, X-n., Fei, U & Pei, G. (2023) Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter. Renewable Energy, 213, 246-258, DOI: 10.1016/j.renene.2023.06.008.
  • 33. Yadav, S., Hachem-Vermette, C., Eranki, G.A. & Panda, S.K. (2023) Performance evaluation of building integrated semitransparent and opaque photovoltaic Trombe wall systems employing periodic thermal models, Energy and Buildings, 294, 113221, DOI: 10.1016/j.enbuild.2023.113221.
  • 34. Zhang, J. & Zhu, T. (2022) Systematic review of solar air collector technologies: Performance evaluation, structure design and application analysis. Sustainable Energy Technologies and Assessments, 54, 102885, DOI: 10.1016/j.seta.2022.102885.
  • 35. Zhelykh, V., Kozak, C. & Savchenko, O. (2016) Using of thermosiphon solar collector in an air heating system of passive house. Pollack Periodica, 11(2), 125-133, DOI: 10.1556/606.2016.11.2.11.
  • 36. Zhelykh, V., Shapoval, P., Shapoval, S. & Kasynets, M. (2021) Influence of orientation of buildings facades on the level of solar energy supply to them. Lecture Notes in Civil Engineering, 100, 499-504, DOI: 10.1007/978-3-030-57340-9_61.
  • 37. Zhelykh, V., Ulewicz, M., Furdas, Y., Adamski, M. & Rebman, M. (2022) Investigation of pressure coefficient distribution on the surface of a modular building. Energies, 15(13), 4644, DOI: 10.3390/ en15134644.
  • 38. Zhelykh, V., Venhryn, I., Kozak, K. & Shapoval, S. (2020) Solar collectors integrated into transparent facades. Production Engineering Archives, 26(3), 84-87, DOI: 10.30657/pea.2020.26.17.
  • 39. Zhou, J., Yu, T. & Lei, B. (2022) Experimental study on the influence of solar heat gain on the thermal performance of hollow ventilated interior wall. ASME J. Sol. Energy Eng., 144(3), 031001. DOI: 10.1115/1.4053775.
  • 40. Zhou, S., Bai, F., Razaqpur, G. & Wang, B. (2023) Effect of key parameters on the transient thermal performance of a building envelope with Trombe wall containing phase change material. Energy and Buildings, 284, 112879, DOI: 10.1016/j.enbuild.2023.112879.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28fc573f-b27b-4994-8f00-29c75b86e34f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.