PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Simple statistical formulas for estimating various biogeochemical properties of suspended particulate matter in the southern Baltic Sea are presented in this paper. These include formulas for estimating mass concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate organic carbon (POC) and total chlorophyll a (Chl a). Two different approaches have been adopted. The first approach was to use the available empirical material (the results of field measurements and laboratory analyses of discrete water samples) and find statistical formulas for estimating the biogeochemical properties of suspended particulate matter from those of inherent optical properties (IOPs), which are potentially retrievable from remote sensing measurements. The second approach was to find formulas that would enable biogeochemical properties of suspended particulate matter to be estimated directly from spectral values of the remote-sensing reflectance Rrs. The latter was based on statistical analyses of a synthetic data set of Rrs obtained from numerical simulations of radiative transfer for which the available empirical material on seawater IOPs and biogeochemistry served as input data. Among the empirical formulas based on seawater IOPs that could be used as a step in two-stage remote sensing algorithms (the other step is estimating certain IOPs from reflectance), the best error statistics are found for estimates of SPM and POM from the particulate backscattering coefficient bbp in the blue region of light wavelengths (443 nm), and for estimates of POC and Chl a from the coefficient of light absorption by the sum of all non-water (i.e. suspended and dissolved) constituents of seawater an, in the blue (443 nm) and green (555 nm) parts of the spectrum respectively. For the semi-empirical formulas under consideration, which could serve as starting points in the development of local one-stage (direct) remote sensing algorithms, the best error statistics are found when SPM, POM and POC are estimated from the same blue-to-red band reflectance ratio (Rrs (490)/ Rrs(645)) (with estimated SPM reaching a better precision than estimated POM and POC), and when Chl a is estimated from the green-to-red band ratio (Rrs(555)/Rrs(645)).
Czasopismo
Rocznik
Strony
7--39
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • [1]. Ahn Y.-H., Moon J.-E., Gallegos S., 2001, Development of suspended particulate matter algorithms for ocean color remote sensing, Korean J. Remote Sens., 17 (4), 285-295.
  • [2]. Bukata R. P., Jerome J. H., Kondratyev K. Ya., Pozdnyakov D. V., 1995, Optical properties and remote sensing of inland and coastal waters, CRC Press, Boca Raton, 362 pp.
  • [3]. Dana D. R., Maffione R. A., 2002, Determining the backward scattering coefficient with fixed-angle backscattering sensors - revisited, Ocean Optics XVI Conf., November 18-22, Santa Fe, New Mexico, 9 pp.
  • [4]. Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS ocean colour chlorophyll algorithms for the southern Baltic Sea, Int. J. Remote Sens., 26 (2), 247-260, http://dx.doi.org/10.1080/01431160410001720298
  • [5]. Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio- optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012
  • [6]. Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582, http://dx.doi.org/10.5697/oc.52-4.533
  • [7]. Fournier G. R., Forand J. L., 1994, Analytic phase function for ocean water, Ocean Optics XII, Proc. SPIE Int. Soc. Opt. Eng., 2258, 194-201.
  • [8]. Franz B. A., Werdell P. J., 2010, A generalized framework for modeling of inherent optical properties in remote sensing applications, Proc. Ocean Optics 2010, Anchorage, Alaska, USA, 27 September-1 October 2010, 13 pp.
  • [9]. Gordon H. R., Brown O. B., Jacobs M. M., 1975, Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean, Appl. Optics, 14 (2), 417-427, http://dx.doi.org/10.1364/AO.14.000417
  • [10]. HOBI Labs (Hydro-Optics, Biology & Instrumentation Laboratories, Inc.), 2008, HydroScat-4 spectral backscattering sensor, USER’S MANUAL, Rev. 4., June 15, 2008, 65 pp.
  • [11]. IOCCG, 2012, Ocean-colour observations from a geostationary orbit, [in:] Reports of the International Ocean-Colour Coordinating Group No. 12, D. Antoine (ed.), IOCCG, Dartmouth, 103 pp.
  • [12]. Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (12), 30047-30058, http://dx.doi.org/10.1029/1999JC900198
  • [13]. Kowalczuk P., Olszewski J., Darecki M., Kaczmarek S., 2005, Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26 (2), 345-370, http://dx.doi.org/10.1080/01431160410001720270
  • [14]. Lee Z. P., Carder K. L., Arnone R., 2002, Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters, Appl. Optics, 41 (27), 5755-5772, http://dx.doi.org/10.1364/AO.41.005755
  • [15]. Loisel H., Bosc E., Stramski D., Oubelkheir K., Deschamps P. Y., 2001, Seasonal variability of the backscattering coefficient in the Mediterranean Sea based on Satellite SeaWiFS imagery, Geophys. Res. Lett., 28 (22), 4203-4206, http://dx.doi.org/10.1029/2001GL013863
  • [16]. Loisel H., Meriaux X., Poteau A., Artigas L. F., Lubac B., Gardel A., Cafflaud J., Lesourd S., 2009, Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications, J. Coast. Res., 56 (SI), 1532-1536.
  • [17]. Maffione R. A., Dana D. R., 1997, Instruments and methods for measuring the backward-scattering coefficient of ocean waters, Appl. Optics, 36 (24), 6057-6067, http://dx.doi.org/10.1364/AO.36.006057
  • [18]. Maritorena S., Hembise Fanton d’Andon O., Mangin A., Siegel D. A., 2010, Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues, Remote Sens. Environ., 114 (8), 1791-1804, http://dx.doi.org/10.1016/j.rse.2010.04.002
  • [19]. Maritorena S., Siegel D. A., 2005, Consistent merging of satellite ocean color data sets using a bio-optical model, Remote Sens. Environ., 94 (4), 429-440, http://dx.doi.org/10.1016/j.rse.2004.08.014
  • [20]. Maritorena S., Siegel D. A., Peterson A., 2002, Optimization of a semi-analytical ocean color model for global scale applications, Appl. Optics, 41 (15), 2705-2714, http://dx.doi.org/10.1364/AO.41.002705
  • [21]. Martinez-Vicente V., Land P. E., Tilstone G. H., Widdicombe C., Fishwick J. R., 2010, Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel, J. Plankton Res., 32 (5), 603-619, http://dx.doi.org/10.1093/plankt/fbq013
  • [22]. McKee D., Cunningham A., 2006, Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents, Estuar. Coast. Shelf Sci., 68 (1-2), 305-316, http://dx.doi.org/10.1016/j.ecss.2006.02.010
  • [23]. McKee D., Piskozub J., Brown I., 2008, Scattering error corrections for in situ absorption and attenuation measurements, Opt. Express, 16 (24), 19480-19482, http://dx.doi.org/10.1364/OE.16.019480
  • [24]. Miller R. L., McKee B. A., 2004, Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, Remote Sens. Environ., 93 (1-2), 259-266, http://dx.doi.org/10.1016/j.rse.2004.07.012
  • [25]. Mobley C. D., 1994, Light and water; radiative transfer in natural waters, Acad. Press, San Diego, 592 pp.
  • [26]. Morel A., 1974, Optical properties of pure water and pure sea water, [in:] Optical aspects of oceanography, N. G. Jerlov & E. Steemann Nielsen (eds.), Acad. Press, London, 1-24. Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722, http://dx.doi.org/10.4319/lo.1977.22.4.0709
  • [27]. Neukermans G., Loisel H., Meriaux X., Astoreca R., McKee D., 2012, In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition, Limnol. Oceanogr., 57 (1), 124-144, http://dx.doi.org/10.4319/lo.2012.57.1.0124
  • [28]. Pegau W. S., Gray D., Zaneveld J. R. V., 1997, Absorption and attenuation of visible and near-infrared light in water: Dependence on temperature and salinity, Appl. Optics, 36 (24), 6035-6046, http://dx.doi.org/10.1364/AO.36.006035
  • [29]. Pope R. M., Fry E. S., 1997, Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Appl. Optics, 36 (33), 8710-8723, http://dx.doi.org/10.1364/AO.36.008710
  • [30]. Rodriguez-Guzman V., Gilbes-Santaella F., 2009, Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay, Int. J. Syst. Appl. Eng. & Dev., 3 (1), 36-44.
  • [31]. Siegel H., Gerth M., Beckert M., 1994, The variation of optical properties in the Baltic Sea and algorithms for the application of remote sensing data, Ocean Optics XII, Proc. SPIE Int. Soc. Opt. Eng., 2258, 894-905.
  • [32]. Sogandares F. M., Fry E. S., 1997, Absorption spectrum (340-640 nm) of pure water. I. Photothermal measurements, Appl. Optics, 36 (33), 8699-8709, http://dx.doi.org/10.1364/AO.36.008699
  • [33]. Smith R. C., Baker K. S., 1981, Optical properties of the clearest natural waters (200-800 nm), Appl. Optics, 20 (2), 177-184, http://dx.doi.org/10.1364/AO.20.000177
  • [34]. Stramski D., Reynolds R. A., Babin M., Kaczmarek S., Lewis M. R., Röttgers R., Sciandra A., Stramska M., Twardowski M. S., Franz B. A., Claustre H., 2008, Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5 (1), 171-201, http://dx.doi.org/10.5194/bg-5-171-2008
  • [35]. Wang L., Zhao D., Yang J., Chen Y., 2012, Retrieval of total suspended matter from MODIS 250 m imagery in the Bohai Sea of China, J. Oceanogr., 68 (5), 719-725, http://dx.doi.org/10.1007/s10872-012-0129-5
  • [36]. Wong M. S., Lee K. H., Kim Y. J., Nichol J. E., Li Z., Emerson N., 2007, Modeling of suspended solids and sea surface salinity in Hong Kong using Aqua/MODIS satellite images, Korean J. Remote Sens., 23 (3), 161-169.
  • [37]. Woźniak B., Bradtke K., Darecki M., Dera J., Dzierzbicka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Ma jchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011a, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing Project in Poland. Part 1: Assumptions, scope and operating range, Oceanologia, 53 (4), 897-924, http://dx.doi.org/10.5697/oc.53-4.897
  • [38]. Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011b, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing Project in Poland. Part 2: Practical applicability and preliminary results, Oceanologia, 53 (4), 925-958, http://dx.doi.org/10.5697/oc.53-4.925
  • [39]. Woźniak S. B., Meler J., Lednicka B., Zdun A., Stoń-Egiert J., 2011, Inherent optical properties of suspended particulate matter in the southern Baltic Sea, Oceanologia, 53 (3), 691-729, http://dx.doi.org/10.5697/oc.53-3.691
  • [40]. Zaneveld J. R. V., Kitchen J. C., Moore C., 1994, The scattering error correction of reflecting-tube absorption meters, Ocean Optics XII, Proc. SPIE Int. Soc. Opt. Eng., 2258, 44-55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28f025b0-4d54-4ac1-8f1e-ee790a308eb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.