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Abstract In this paper we present an analysis of a mathematical model of 6-MP/6-
TGN dynamics during the maintenance therapy of acute lymphoblastic leukemia
which was proposed in Le et al. (2018). We first discuss the model with constant
treatment, comparing its properties to the case without treatment. Next, we describe
the model which switches between models with constant treatment and without
treatment depending on frequency of drug administration and the drug’s absorption
time. We show that the model with the switch has asymptotic periodic dynamics.
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1. Introduction Acute lymphoblastic leukemia (ALL) is the most com-
mon cancer in children [1]. It comprises 21% of all childhood cancers, includ-
ing about 75% of leukemias. ALL is characterized by the overproduction of
immature, abnormal white blood cells. These cells are called lymphoblasts.

Chemotherapy treatment of ALL is a three-step process. The first step is
to induce remission by high-dose treatment. The next part is consolidation
therapy, used to prolong an effect of the first part of the treatment. The last
step is called maintenance therapy. At this stage, low-dose treatment is in-
troduced. The maintenance therapy is the longest part of the chemotherapy
and could last more than two years. This therapy includes oral administra-
tion of 6-mercaptopurine (6-MP, daily) and methotrexate (MTX, weekly) [3].
Both 6-MP [8] and MTX [9] are cytostatic drugs which cause antileukemic
effect through their metabolized active forms (6-TGN and MTXPG respec-
tively) [10]. According to the treatment protocol AIEOP-BFM 2009, the
number of white blood cells should oscillate in a specific range [7]. An appro-
priate level provides patients with protection against the relapse of leukemia
and other infections.

In [7] Le et al. presented a detailed mathematical description of the main-
tenance therapy. The model proposed in [7] consists of three modules. Two of
these modules reflect the dynamics of the drugs. They are described in the frame-
work of ordinary differential equations with the specific initial conditions. The
purpose of this article is to present and analyze the first module related to
the 6-MP treatment.
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The PK/PD model of 6-MP/6-TGN is a compartment model reflecting
the dynamics of 6MP during the therapy. Several 6-MP models have been
published, but in [7] authors mentioned [2, 4], both of which have a compara-
ble representation of the absorption and metabolic pathway of 6MP but the
model of Hawwa et al. presented in [2] describes the metabolic transforma-
tions by first order kinetics instead of Michaelis–Menten kinetics used in [4].
In [7] authors based on an approach used by Jayachadran et al. in [4], but
during the maintenace therapy model further development (results presented
by Jost et al. in [5]) authors have replaced the 6MP model of [4] with the
model described by Hawwa et al. in [2] to obtain a better response to 6MP
dosage.

2. Mathematical model In this section, following [7] we will present
a model of 6-MP/6-TGN dynamics, where 6-TGN is 6-thioguanine nucleotide
– metabolite of 6-MP. The model describing the treatment using 6-MP can be
split into two parts. The first one includes drug absorption, the second does
not. In [7] it is assumed that the absorption time equals one hour. There is
a slight change we would like to make in comparison with the prototype. We
assume that the patient takes the drug at regular time intervals.

The time unit in the model is one day. We assume that till t = 0 there
have been no 6-MP and its metabolites in the patient’s organism. The first
dose of D miligrams is given at time t0 = 0. For t ∈ [t0, t1], where t1 = t0+

1
24 ,

the model including drug absorption is used. Similarly for t ∈ [t1, t2], where
t2 = t1 +

23
24 , the model without drug absorption is appropriate; cf. Fig. 1.

Figure 1: When t ∈ [t2k, t2k+1], for k = 0, 1, 2 . . . , where t2k+1 = t2k +
1
24 , the model

including drug absorption is applied, when t ∈ [t2k+1, t2k+2], for k = 0, 1, 2 . . . , where
t2k+2 = t2k+1 +

23
24 , the model without drug absorption is applied.

In the model there are three state variables:

• x1(t) — amount of 6-MP in gastrointestinal (GI) tract (pmol),
• x2(t) — amount of 6-MP in plasma (pmol),
• x3(t) — concentration of 6-TGN in red blood cells (pmol/8 × 108 RBCs).
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Figure 2: Scheme of 6-MP/6-TGN model. For the model without drug absorption
D = 0, for the model including drug absorption D > 0.

The system of ordinary differential equations reflecting the scheme pre-
sented in Fig. 2 reads

ẋ1 = −kax1 + c,

ẋ2 = kax1 − kex2 − kpt(1−erel)x2

Kt+x2
− kpmerelx2

Km+x2
,

ẋ3 =
vptkpt(1−erel)x2

Kt+x2
− ktex3,

(1)

with initial values

x1(0) = x̃1, x2(0) = x̃2, x3(0) = x̃3, (2)

where x̃1 ≥ 0, x̃2 ≥ 0 i x̃3 ≥ 0. All parameters are taken from [7]. Parameter
c = 0 for the model without drug absorption, while for the model including
drug absorption c = 24FDα. All other parameters in System (1) are posi-
tive and erel < 1 (implying positivity of 1 − erel). It should be noted that
System (1) with the arbitrary positive parameter c can be interpreted as a
continuous treatment using 6-MP. All parameters of System (1) are described
and summarized in Table 1.

3. The analysis of the model In this section, we will discuss the
proposed model assuming constant drug absorpion. Note that the presented
analysis is also valid when there is no treatment, i.e. c = 0. Let

f(x) =

 −kax1 + c

kax1 − kex2 − kpt(1−erel)x2

Kt+x2
− kpmerelx2

Km+x2
vptkpt(1−erel)x2

Kt+x2
− ktex3

 (3)

denote the right-hand side of System (1). It is obvious that the function f is
of class C1 in [0,∞)3 and therefore Problem (1)-(2) has a unique solution.



306 PK/PD model of 6-mercaptopurine treatment in acute leukemia

3.1. Boundedness and global existence of solutions Due to the
meaning of the variables, for all nonnegative initial data solutions should be
nonnegative as well.

Solving the first equation of System (1) we get

x1(t) =
c

ka
+

(
x̃1 −

c

ka

)
e−kat, (4)

and it is obvious that x1 is nonnegative for x̃1 ≥ 0.
From nonnegativity of x1 we obtain

ẋ2 ≥ −kex2 −
kpt(1− erel)x2

Kt + x2
− kpmerelx2

Km + x2
,

implying

x2(t) ≥ x̃2 e
−
(
ket+

t∫
0

(
kpt(1−erel)

Kt+x2(ζ)
+

kpmerel
Km+x2(ζ)

)
dζ

)
≥ 0.

Similarly, from nonnegativity of x2 we obtain

ẋ3 ≥ −ktex3,

implying
x3(t) ≥ x̃3 e

−ktet ≥ 0.

Next, we will show that solutions are bounded from above which implies
that the maximal interval of existence includes [0,+∞).
Due to nonnegativity of solutions we get

ẋ1 = −kax1 + c,

ẋ2 = kax1 − kex2 − kpt(1−erel)x2

Kt+x2
− kpmerelx2

Km+x2
≤ kax1 − kex2,

ẋ3 =
vptkpt(1−erel)x2

Kt+x2
− ktex3 < vptkpt(1− erel)− ktex3.

From Equation (4) we get x1 ≤ xM1 = max
{
x̃1,

c
ka

}
. Next, using the inequal-

ity for ẋ2 in the second equation we obtain

ẋ2 ≤ kax
M
1 − kex2 ⇒ x2 ≤ xM2 = max

{
x̃2,

kax
M
1

ke

}
.

Similarly

ẋ3 < vptkpt(1− erel)− ktex3 ⇒ x3 < xM3 = max

{
x̃3,

vptkpt(1− erel)

kte

}
.

Hence, the state variables are bounded. Therefore, solutions of Problem (1)-
(2) exist for all t ≥ 0. Moreover, there is the invariant subspace

M =

{
(x1, x2, x3) ∈ R3 : 0 ≤ x1 ≤

c

ka
, 0 ≤ x2 ≤

c

ke
, 0 ≤ x3 <

vptkpt(1− erel)

kte

}
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which will be crucial for the further analysis.

3.2. Stationary states: existence and stability
Let (x̄1, x̄2, x̄3) be a stationary state of System (1) with coordinates x̄i

depending on the parameter c. Let us check the number of stationary states
of System (1). We equate the right-hand side of System (1) to 0:

−kax1 + c = 0,

kax1 − kex2 − kpt(1−erel)x2

Kt+x2
− kpmerelx2

Km+x2
= 0,

vptkpt(1−erel)x2

Kt+x2
− ktex3 = 0.

After a few transformations we get
x1 = c

ka
,

x2

(
ke +

kpt(1−erel)
Kt+x2

+
kpmerel
Km+x2

)
= c,

x3 =
vptkpt(1−erel)x2

kte(Kt+x2)
.

(5)

Let us draw attention to the second equation of System (5). We would like to
prove that for any c ≥ 0 it has a unique nonnegative solution. Any solution
of this equation is a zero of the following function:

F (x2) = x2

(
ke +

kpt(1− erel)

Kt + x2
+

kpmerel
Km + x2

)
− c.

It is easy to see that F is continuous on R+. Moreover, F (0) = −c and
limx2→∞ F (x2) = +∞. Thus, from Darboux property, F has at least one
zero. Next, we need to show that it is unique. We calculate the derivative:

∂F

∂x2
= ke +

Ktkpt(1− erel)

(Kt + x2)2
+

Kmkpterel
(Km + x2)2

> 0,

and therefore F is strictly increasing on R+. Hence, there exists exactly one
nonnegative zero x̄2 ≥ 0 of F . Then

x̄3 =
vptkpt(1− erel)x̄2

kte(Kt + x̄2)
.

Therefore there is the only one stationary state of System (1) for any c ≥ 0

S = (x̄1, x̄2, x̄3) =

(
c

ka
, x̄2,

vptkpt(1− erel)x̄2
kte(Kt + x̄2)

)
.

For the model without drug absorption, i.e. for c = 0, (x̄1, x̄2, x̄3) = (0, 0, 0),
and for the model including drug absorption, i.e. for c > 0, we obtain positive
stationary state.
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Let A denote a Jacobian matrix for System (1):

A =

−ka 0 0

ka −ke − Ktkpt(1−erel)
(Kt+x̄2)2

− Kmkpterel
(Km+x̄2)2

0

0
vptKtkpt(1−erel)

(Kt+x̄2)2
−kte

 . (6)

It is easy to see that at a stationary state all eigenvalues of (6) are real
negative, so the stationary state is locally asymptotically stable independently
of the parameter c.

Next, let us analyze global dynamics for c ∈ R+. We propose the Lyapunov
function:

Vl(x1, x2, x3) =
(x1 − x̄1)

2

2
+

A(x2 − x̄2)
2

2
+

B(x3 − x̄3)
2

2

for A = 4ke
ka

and B = 16Ktkteke
kav2ptkpt(1−erel)

. It is obvious that Vl(x) ≥ 0 and Vl(x) =

0 ⇐⇒ x = x̄. Calculating the derivative of Vl along trajectories of System (1)
we obtain
d

dt
Vl(x(t)) = ẋ1 · (x1 − x̄1) + ẋ2 ·A(x2 − x̄2) + ẋ3 ·B(x3 − x̄3)

= −ka(x1 − x̄1)
2 +A(x2 − x̄2)

(
kax1 − kex2 −

kpt(1− erel)x2

Kt + x2
− kpmerelx2

Km + x2

)
+B(x3 − x̄3)

(
vptkpt(1− erel)x2

Kt + x2
− ktex3

)
= −ka(x1 − x̄1)

2 + kaA(x1 − x̄1)(x2 − x̄2)−Ake(x2 − x̄2)
2

−AkptKt(1− erel)
(x2 − x̄2)

2

(Kt + x2)(Kt + x̄2)
−AkpmKmerel

(x2 − x̄2)
2

(Km + x2)(Km + x̄2)

− kteB(x3 − x̄3)
2 + vptkptKt(1− erel)

B(x2 − x̄2)(x3 − x̄3)

(Kt + x2)(Kt + x̄2)
.

Calculating the matrix of this quadratic form we obtain:−ka
kaA
2 0

kaA
2 −A

(
ke +

Ktkpt(1−erel)
(Kt+x2)(Kt+x̄2)

+
Kmkpmerel

(Km+x2)(Km+x̄2)

)
BKtvptkpt(1−erel)
2(Kt+x2)(Kt+x̄2)

0
BKtvptkpt(1−erel)
2(Kt+x2)(Kt+x̄2)

−kteB

 . (7)

In this part we restrict our analysis to the invariant subspace M , to which the
solutions are attracted. From Sylvester’s criterion we obtain that a quadratic
form is negative definite ⇐⇒ W1 < 0, W2 > 0 i W3 < 0, where Wi is a
determinant of the i-th leading principal minor. The first condition W1 < 0 is
true due to the positivity of the parameters. The second condition is W2 > 0,
where

W2 = kaA

(
ke +

Ktkpt(1− erel)

(Kt + x2)(Kt + x̄2)
+

Kmkpmerel
(Km + x2)(Km + x̄2)

)
− k2aA

2

4
.
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Let us estimate from below

W2 > Akake −
k2aA

2

4
= 0 for A =

4ke
ka

.

The third condition is W3 < 0, where

W3 = −B

(
kteW2 −

kaB

4

K2
t v

2
ptk

2
pt(1− erel)

2

(Kt + x2)2(Kt + x̄2)2

)
.

For A = 4ke
ka

we obtain W2 = kaA
(

Ktkpt(1−erel)
(Kt+x2)(Kt+x̄2)

+
Kmkpmerel

(Km+x2)(Km+x̄2)

)
. Let

us estimate from the above

W3 < −B

(
ktekaA

Ktkpt(1− erel)

(Kt + x2)(Kt + x̄2)
− kaB

4

K2
t v

2
ptk

2
pt(1− erel)

2

(Kt + x2)2(Kt + x̄2)2

)

= −B
Ktkpt(1− erel)

4(Kt + x2)(Kt + x̄2)

(
4kakteA−B

kaKtv
2
ptkpt(1− erel)

(Kt + x2)(Kt + x̄2)

)

≤ −B
Ktkpt(1− erel)

4(Kt + x2)(Kt + x̄2)

(
16kteke −B

kav
2
ptkpt(1− erel)

Kt

)
= 0

for A = 4ke
ka

and B = 16Ktkteke
kav2ptkpt(1−erel)

.

Hence, we obtain d
dtVl(x(t)) < 0 . Thus, from Lyapunov-LaSalle theorem

[6] (x̄1, x̄2, x̄3) is globally asymptotically stable.

4. Model with the switch In this section we consider 6-MP/6-TGN
model as a model with the switch. This means that we model the treatment
using 6-MP basing on switching between models with and without drug ab-
sorption.

Lemma 4.1 The switching equation for x1 in the 6-MP/6-TGN model with
the switch is determined by the following recursive formula:{

x1(t2k+1) = c−(−kax1(t2k)+c) e−ka(t2k+1−t2k)

ka
,

x1(t2k+2) = x1(t2k+1) e
−ka(t2k+2−t2k+1),

(8)

where k = 0, 1, 2..., c = 24FD1α and t2k+1, t2k+2 described in Section 2.

Proof. By induction. First, we will show that for k = 0 Formula (8) is true.
Solving

ẋ1 = −kax1 + c (9)

with the initial value x1(0) = 0 for t ∈ [0, t1), we have

x1(t) =
c(1− e−kat)

ka
.
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Next, we take the limit at t1 equal to c(1−e−kat1 )
ka

. Then for t ∈ [t1, t2) we solve

ẋ1 = −kax1 (10)

with initial value x1(t1) =
c(1−e−kat1 )

ka
and we get

x1(t) = x1(t1) e
−ka(t−t1) .

Hence, the limit at t2 equals to

x1(t2) = x1(t1) e
−ka(t2−t1) .

Therefore, Formula (8) is true for k = 0.
Now, we assume that for k = n− 1 Formula (8) is true. Solving (9) with

the initial value x1(t2n) = x1(t2n−1) e
−ka(t2n−t2n−1) on t ∈ [t2n, t2n+1), we

obtain:

x1(t) =
c− (−kax1(t2n) + c) e−ka(t−t2n)

ka
.

Next, we take the limit at t2n+1 and we get c−(−kax1(t2n)+c) e−ka(t2n+1−t2n)

ka
. This

limit is the initial value for Equation (9) for t ∈ [t2n+1, t2n+2). We obtain:

x1(t) = x1(t2n+1) e
−ka(t−t2n+1),

with the limit at t2n+2 equal to

x1(t2n+2) = x1(t2n+1) e
−ka(t2n+2−t2n+1) .

2

Because we have assumed that the patient takes the drug at regular time
intervals Lemma 4.1 implies Lemma 4.2.

Lemma 4.2 For 6-MP/6-TGN model with the switch and n = 1, 2, 3..., where
n denotes the number of days of the therapy, the equation for x1(n) is deter-
mined by:

x1(n) =
c e−ka

(
e

ka
24 −1

)
ka (1− e−ka)

(
1− e−kan

)
. (11)

Proof. For t ∈ [t2k, t2k+1], k = 0, 1, 2 . . . , where t2k+1 = t2k + 1
24 , the model

with drug absorption is applied, for t ∈ [t2k+1, t2k+2], k = 0, 1, 2 . . . , where
t2k+2 = t2k+1 +

23
24 , the model without drug absorption is applied. Time for

one cycle equals to 1, because t2k+2− t2k = 1, where t2k and t2k+2 denote the
subsequent moments of the drug application. The treatment starts at t = 0,
hence the next doses are taken by the patient at t = 1, 2, 3.... Combining
the results for times indexed by even and odd integers from Lemma 4.1 we
conclude

x1(t2k+2) = x1(t2k) e
−ka +e−ka c

ka

(
e

ka
24 −1

)
.
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Substituting t2k = k, where k = 0, 1, 2... is the number of subsequent days of
the therapy, we get the following recursive formula:

x1(k + 1) = x1(k) e
−ka +e−ka c

ka

(
e

ka
24 −1

)
.

Now, we will prove Lemma 4.2 by induction. For k = 1 Formula (11) is
obvious. Next we assume that Formula (11) is true for k = n − 1. Using
recursion

x1(n) = x1(n− 1) e−ka +e−ka c

ka

(
e

ka
24 −1

)
.

We substitute equation for x1(n− 1) and we obtain:

x1(n) =

(
x1(1) e

−ka(n−2)+
c e−ka

ka

(
e

ka
24 −1

) 1− e−ka(n−2)

1− e−ka

)
e−ka

+ e−ka c

ka

(
e

ka
24 −1

)
.

Next, we simplify the right-hand side of the equation:

x1(n) = x1(1) e
−ka(n−1)+e−2ka c

ka

(
e

ka
24 −1

) 1− e−ka(n−2)

1− e−ka

+ e−ka c

ka

(
e

ka
24 −1

)
= x1(1) e

−ka(n−1)+e−ka c

ka

(
e

ka
24 −1

)
(e−ka +...+ e−ka(n−2))

+ e−ka c

ka

(
e

ka
24 −1

)
= x1(1) e

−ka(n−1)+e−ka c

ka

(
e

ka
24 −1

)
(1 + e−ka +...+ e−ka(n−2))

= x1(1) e
−ka(n−1)+e−ka c

ka

(
e

ka
24 −1

) 1− e−ka(n−1)

1− e−ka
.

We substitute x1(1) and we get the following formula for x1(n):

x1(n) =
c

ka

(
e

ka
24 −1

)
e−kan+e−ka c

ka

(
e

ka
24 −1

) 1− e−ka(n−1)

1− e−ka

=
c e−ka

(
e

ka
24 −1

)
ka

(
1 + e−ka +...+ e−ka(n−1)

)
=

c e−ka
(
e

ka
24 −1

)
ka (1− e−ka)

(
1− e−kan

)
.

2

Proposition 4.3 The solution of the switching equation for x1 converges to
a periodic function with period 1.
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Proof. From Lemma 4.2 we get the formula for x1 at t ∈ N. If n → ∞, then

x1(n) →
c e−ka

ka

e
ka
24 −1

1− e−ka
.

Let G = c e−ka

ka
e
ka
24 −1

1−e−ka
. Next, taking x1(n+ t), where t ∈ (0, 1), we obtain

x1(n+ t) = x(n) e−kat+
c e−kat

ka

(
eka min {t, 1

24
}−1

)
implying that the solution of the switching equation for x1 converges to the
periodic function:

V (t) = G e−ka(t−⌊t⌋)+
c e−ka(t−⌊t⌋)

ka

(
eka min {(t−⌊t⌋), 1

24
}−1

)
2

Let us now consider the asymptotic dynamics of the system for x2 and
x3. This system reads:{

ẋ2 = kaV (t)− kex2 − kpt(1−erel)x2

Kt+x2
− kpmerelx2

Km+x2
,

ẋ3 =
vptkpt(1−erel)x2

Kt+x2
− ktex3,

(12)

Proposition 4.4 Asymptotic dynamics of the System (12) for x2 and x3 is
periodic with period 1.

Proof. Let y(t) = x2(t+ 1)− x2(t). Therefore, assuming y ̸= 0,

ẏ

y
≤ −ke.

We need to prove that y(t) converges to 0 for t → ∞. There are two possi-
bilities: y(t) ≥ 0 or y(t) < 0. For y(t) ≥ 0 estimating the derivative from the
above

ẏ ≤ −key

We obtain:
0 ≤ y(t) ≤ y0 e

−ket .

For y(t) < 0 let z(t) = −y(t). Then

ẏ

y
=

ż

z
≤ −ke,

therefore:
0 > y(t) > y0 e

−ket .
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Figure 3: The comparison of the plots illustrating variables in the 6MP/6TGN model
with the switch during different parts of the therapy, where variables are in the fol-
lowing units: x1 — pmol, x2 — pmol, x3 — pmol/8 × 108 RBCs.

Hence, the variable x2 converges to a periodic function. The same proof as
for x2 can be applied to x3. 2
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(a) The comparison of the plots of the solution of the switching equation for x1 and the
periodic function to which this solution converges.

(b) The plot of the relative error between the solution of the switching equation for x1 and
periodic function. Logarithmic scale is used for X axis representing the time of therapy.

Figure 4: The plots illustrating asymptotic dynamics of x1 and its relation to afore-
mentioned periodic function.

Numerical simulations presented in Fig. 3 support the Assertions of Propo-
sitions 4.3 and 4.4. In Fig. 4a we present two separate plots because placing
the solution of the switching equation for x1 and periodic function to which
this solution converges in one plot may cause difficulties to distinguish be-
tween them. Additionally, in Fig. 4b we present the plot of relative error
between the solution of the switching equation for x1 and periodic function.
Fig. 5a and 5b are illustrating asymptotic dynamics of the switching equa-
tions for x2 and x3. For simulations we used parameters from Table 1 and we
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took dose D = 50 mg 6-MP.

(a) The plot illustrating the difference between x2(t + 1) − x2(t). The logarithmic scale is
used for X axis representing the time of therapy.

(b) The plot illustrating the difference between x3(t + 1) − x3(t). The logarithmic scale is
used for X axis representing the time of therapy.

Figure 5: For variables x2 and x3 we do not have explicitly defined limit periodic
functions, but we can illustrate the difference between the phases shifted by 1.

5. Conclusions In this work we presented a mathematical model for
the maintenance therapy of acute lymphoblastic leukemia described by Le et
al. in their paper [7]. Firstly we reported the details of the model in Sec-
tion 2 and then, in Section 3, proceeded to analyze it. In particular, we
have proved boundedness and existence of solutions and discussed its sta-
bility and stationary states. For model without drug absorption we obtained
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the globally asymptotically stable zero stationary state, whereas for the model
with drug absorption we obtained globally asymptotically stable positive sta-
tionary state. At the end we described an alternative model which switches
between models with and without drug absorption and proved some impor-
tant properties, including asymptotic periodic dynamics. The obtained re-
sults describe chemotherapy with the assumption of the drug administration
at regular time intervals. We presented numerical simulations illustrating the
solutions of the switching equations and supporting the assertion regarding
asymptotic dynamics. Analysis of the model with the switch has potential to
be extended and used for other drug models.
Acknowledgments: The author would like to thank Professor Urszula Foryś for her in-
valuable help and support in writing this paper.

A. Parameters

Parameters Values Units Description
ka 4,8 1

day 6-MP absorption rate from GI tract
ke 5,0 1

day 6-MP elimination rate from plasma
kpt 29,8 pmol

day 6-MP to 6-TGN conversion rate
kpm 655,8 pmol

day 6-MP to MeMP conversion rate
Kt 4,04 ×105 pmol Michelis-Menten constant for 6-TGN
Km 3,28 ×105 pmol Michelis-Menten constant for MeMP
kte 0,0714 1

day 6-TGN elimination rate from RBCs
erel 0,5 TPMT enzyme activity constant
vpt 1 pmol 6-TGN

pmol 6-MP/8×108RBCs 6-TGN elimination rate from RBCs
F 0,45 bioavailability factor
D mg dose of 6-MP
α 1012

152177
pmol
mg unit consistency constant

Table 1: Parameters of the 6-MP/ 6-TGN model
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Model PK/PD terapii ostrej białaczki 6-merkaptopuryną
Zofia Gruba

Streszczenie W niniejszej pracy przedstawiono analizę modelu lekowego dyna-
miki 6-MP/6-TGN podczas terapii podtrzymującej ostrej białaczki limfoblastycznej,
który został zaproponowany przez T. T. T. Le al. w 2018 roku. Wykazano kilka pod-
stawowych własności, takich jak istnienie, jednoznaczność, nieujemność i ograniczo-
ność rozwiązań. Znaleziono stany stacjonarne i zbadano ich stabilność. Dodatkowo
zaprezentowano alternatywny model z przełączeniem. Wykazano, że asymptotyczne
rozwiązania modelu z przełączeniem są okresowe z okresem, z jakim podawany jest
lek.

Klasyfikacja tematyczna AMS (2010): Primary: 92C45; Secondary: 92C50.

Słowa kluczowe: równania różniczkowe zwyczajne, punkty stacjonarne, stabilność,
model z przełączeniem, ostra białaczka limfoblastyczna.
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