Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Seasonal variability of particulate matter sources on the example of Krakow
Języki publikacji
Abstrakty
We are observing a long-term trend, which is the growing interest of scientists and the general public, in air quality and air pollution, both in Poland and around the world. The deterioration of air quality is influenced by both anthropogenic and natural factors. The most well-known sources of anthropogenic emissions into the atmosphere include the combustion of fossil fuels and biomass, transportation, industry, as well as agricultural activities. Natural sources include, for example, grass pollen, soil erosion, wildfires, and volcanic emissions. One of the primary pollutants emitted into the atmosphere is particulate matter (PM) – an aerosol with a complex composition. It may contain chemical compounds considered carcinogenic, and long-term exposure to high concentrations can lead to adverse health effects. Therefore, in 2021, the World Health Organization (WHO) published recommended limits for particulate matter fractions PM10 and PM2.5. In the doctoral dissertation of Alicja Skiba entitled „Seasonal variability of air pollution sources in Kraków during the period of 2018-2019, based on analyses of chemical and isotopic composition”, the sources of particulate matter in a major urban center – Krakow, were studied. Two particulate matter fractions (PM1 and PM10) were analyzed, with daily samples collected between April 21, 2018, and March 19, 2019. These samples underwent the following analyses: ion chromatography, high-performance anion-exchange chromatography with pulsed amperometric detection, energy-dispersive X-ray fluorescence spectrometry, thermo-optical analysis of OC/EC, and mass spectrometry (AMS and IRMS). The results were interpreted using methods such as positive matrix factorization (PMF). The application of PMF revealed five emission sources: coal and biomass(solid fuel) combustion, secondary inorganic aerosols, road emissions, soil matter, industry and other unidentified sources. The results showed significant variability in emissions from coal and biomass combustion between the heating and non-heating seasons (a substantial increase from several percent to as much as 41%). Industrial emissions exhibited a relatively stable contribution throughout the year, ranging from approximately 14% to 24%, depending on the fraction and season.
Wydawca
Czasopismo
Rocznik
Tom
Strony
101--117
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
- AGH Akademia Górniczo-Hutnicza
autor
- AGH Akademia Górniczo-Hutnicza
autor
- AGH Akademia Górniczo-Hutnicza
autor
- AGH Akademia Górniczo-Hutnicza
autor
- AGH Akademia Górniczo-Hutnicza
autor
- AGH Akademia Górniczo-Hutnicza
Bibliografia
- [1] C. Zhu, K. Maharajan, K. Liu, Y. Zhang, Environ. Res. 2021, 198, 111281.
- [2] H. Li, J. E. Hart, S. Mahalingaiah, R. C. Nethery, E. Bertone-Johnson, F. Laden, Environ. Pollut., 2021, 269, 116216.
- [3] J. Oh, S. Ye, D.-H. Kang, E. Ha, Environ. Res. 2022, 212, 113080.
- [4] WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization; 2021.
- [5] M. Li, Y. Feng, K. Wang, W. F. Yong, L. Yu, T. S. Chung, Environ. Sci. Technol., 2017, 51, 10041.
- [6] A. Skiba, “Seasonal variability of air pollution sources in Kraków during the period of 2018-2019, based on analyses of chemical and isotopic composition,” AGH University of Krakow, 2022.
- [7] Urząd Statystyczny w Krakowie, “Statystyczne Vademecum Samorządowca” Kraków, 2020.
- [8] D. Matuszko, "Climate of Krakow in the 20th century". Krakow: Institute of Geography and Spatial Management of the Jagiellonian University, Kraków, 2007.
- [9] A. Bokwa, "Wieloletnie zmiany struktury mezoklimatu miasta na przykładzie Krakowa". Kraków: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, 2010.
- [10] A. Bokwa, Acta Geogr. Lodz. 2019, 108, 2019.
- [11] www.digitel-ag.com
- [12] U.S. Environmental Protection Agency, “EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide,” Washington, 2014.
- [13] P. Paatero, U. Tapper, Environmetrics, 1994, 5, 111.
- [14] Y. Zhang, R. J. Sheesley, M. Bae, J. J. Schauer, Atmos. Environ, 2009, 43, 4951.
- [15] J. C. Chow, D. H. Lowenthal, L. W. A. Chen, X. Wang, J. G. Watson, Air Qual. Atmos. Health, 2015, 8, 243.
- [16] C. A. Belis, F. Karagulian, B. R. Larsen, P. K. Hopke, Atmos. Environ, 2013, 69, 94. [17] M. Zimnoch, L. Samek, L. Furman, K. Styszko, A. Skiba, Z. Gorczyca, M. Galkowski, K. Rozanski, E. Konduracka, Sustainability, 2020, 12,1.
- [18] Parliament of the Lesser Poland Voivodeship, "Uchwała Nr XVIII/243/16 w sprawie wprowadzenia na obszarze Gminy Miejskiej Kraków ograniczeń w zakresie eksploatacji instalacji, w których następuje spalanie paliw", nr 243, 2016.
- [19] Parliament of the Lesser Poland Voivodeship, "Uchwała NR LIX/842/22 Sejmiku Województwa Małopolskiego z dnia 26 września 2022 roku w sprawie zmiany uchwały Nr XXXII/452/17 Sejmiku Województwa Małopolskiego z dnia 23 stycznia 2017r.", nr 6497. 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28e9a08d-866b-4082-8a3f-61988c3258c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.