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Abstract: In this study, dynamical parameters of the cycloidal gearbox working at the constant angular velocity of the input shaft  
were investigated in the multibody dynamics 2D model implemented in the Fortran programming language. Time courses of input  
and output torques and forces acting on the internal and external sleeves have been shown as a function of the contact modelling  
parameters and backlash. The analysis results in the model implemented in Fortran were compared with the results in the 3D model  
designed using MSC Adams software. The values of contact forces are similar in both models. However, in the time courses obtained  
in MSC Adams there are numerical singularities in the form of peaks reaching 500 N for the forces at external sleeves and 400 N  
for the forces acting at internal sleeves, whereas in the Fortran model, there are fewer singularities and the maximum values of contact 
forces at internal and external sleeves do not exceed 200 N. The contact damping and discretisation level (the number of discrete contact 
points on the cycloidal wheels) significantly affect the accuracy of the results. The accuracy of computations improves when contact  
damping and discretisation are high. The disadvantage of the high discretization is the extended analysis time. High backlash values lead 
to a rise in contact forces and a decrease in the force acting time. The model implemented in Fortran gives a fast solution and performs 
well in the gearbox optimisation process. A reduction of cycloidal wheel discretisation to 600 points, which still allows satisfactory analysis, 
could reduce the solution time to 4 min, corresponding to an analysis time of 0.6 s with an angular velocity of the input shaft of 52.34 rad/s 
(500 RPM). 
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1. INTRODUCTION 

Cycloidal gearboxes find wide application in the drives of ro-
botic systems and the winches of rescue helicopters or off-road 
vehicles. The cycloidal gearbox design analysed in this study is 
characterised by the vibration of the output shaft with significant 
amplitude. The variable angular velocity of the output shaft (Fig. 1) 
is the source of vibrations, which emerge from the given geometry 
of the gearbox. 

Contemporary research in cycloidal gearbox engineering con-
cerns the construction of discrete models, which contain springs 
and dampers [1], [2] or modelling of the cycloidal gearbox using 
engineering software [2], [3]. In the iterative analysis, the current 
loading state of the cycloidal gearbox depends on previous load-
ing cycles. Excluding back iterations, applying the discrete models 
for the dynamic analysis gives low-accuracy results. Analysis of 
the influence of the various contact models on the torque at the 
output shaft requires constructing transient models based on 
multibody dynamics. Time courses of the forces and moments 
obtained in the analysis find their application in developing fault 
diagnosis methodologies and optimisation. Current research in 
this area includes fault diagnosis of planetary drives [4–6], while 
research that concerns cycloidal gearboxes is rare. 

Studies in the field of cycloidal gearbox engineering deal with 
the subject of design issues [7–13], finite element analysis of the 

cycloidal gearbox parts [7,13–17], kinematical analysis [16,18], 
applications in robotics [12,16,17,19], friction, lubrication and 
machining [20–24], measurements [25], efficiency [26,27], optimi-
sation [8,28], contact modelling [29–32], backlash and design 
tolerances [9,30,33–35] or vibration and dynamics [31,32,36–40]. 

 
Fig.1. Variable angular velocity of the output shaft 

Analysis of the backlash and design tolerances in the cycloidal 
gearboxes, which deal with the transient analysis, is scarce be-
cause it demands programming of the dynamic transient model 
based on multibody dynamics. Furthermore, high complexity and 
difficulties in setting up relevant values of the contact modelling 
parameters (contact damping and contact stiffness, which could 
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be different for various parts of the gearbox being in contact) in 
these models allow simplified, static analysis methods to be more 
attractive.  

The motivation to implement the presented transient model 
was a comprehensive study [32] describing methods of contact 
modelling in cycloidal gearboxes and showing the time courses of 
the dynamic entities in the analysed gearbox. The geometry of the 
cycloidal gearbox presented in Ref [32] is different than that pre-
sented in the current article. The difference is also in the adaptive 
time stepping used in the analysis [32]. The Fortran model de-
scribed in this article uses the constant time step integrator, sim-
plifying the analysis. Guidelines in contact modelling presented in 
Ref [32] are a good starting point in programming models of cy-
cloidal gearboxes. 

This article describes the transient model [41] programmed in 
Fortran for fast analysis of the cycloidal gearbox. The possible 
applications of this model are developing fault diagnosis methods, 
vibration analysis, contact stress optimisation or analysis of con-
tact models. The authors analysed the backlash in the form of 
design tolerance, contact stiffness and relative velocity of the 
contact points in the scope of contact modelling methodology. In 
addition, the time courses of the forces and moments in the cy-
cloidal gearbox were shown as a function of contact damping. 

2. MODELS OF THE CYCLOIDAL GEARBOX 

Two models of the cycloidal gearbox were built: the first model 
was designed using MSC Adams software, and the second model 
was programmed based on multibody dynamics in Fortran. The 
second model was also implemented using Matlab software. 
Unfortunately, the adaptive time step was time-consuming. The 
version implemented in Fortran, which is a fast structural pro-
gramming language with computer algebra facilities, uses the 
2nd-order Runge Kutta method with constant integration steps. 
Both models consisted of input and output shafts, two cycloidal 
wheels and 16 external and eight internal sleeves (Fig. 2). All 
bodies were mounted on bearings, which allowed relative rota-
tional motions between the parts. The shape of the cycloidal 
wheels is described in the system of parametric Eq. (1); the pa-
rameters from the given system are presented in Tab. 1, the 
masses and moments of inertia of bodies are given in Tab. 2 and 
loads are given in Tab. 3. 

In the model programmed in Fortran (Fig. 2b), visualisation 
software (programmed in Java language with the OpenGL library) 
does not show the input shaft with the eccentric cams on which 
cycloidal wheels are mounted. The analysed gearbox was de-
signed with the dimensions presented in Fig. 3. 

{
 
 

 
 𝑢
(𝛼) =

𝑒∙𝑧𝑘

𝑚
cos(𝛼) + 𝑒 ∙ cos(𝑧𝑘 ∙ 𝛼) − 𝑞 ∙ cos(𝛼 + γ)

𝑣(𝛼) =
𝑒∙𝑧𝑘

𝑚
sin(𝛼) + 𝑒 ∙ sin(𝑧𝑘 ∙ 𝛼) − 𝑞 ∙ sin(𝛼 + 𝛾)

𝛾 = atan [
sin(𝑧𝑠∙𝛼)

1

𝑚
+cos(𝑧𝑠∙𝛼)

] 

,              (1)                                                           

The input shaft rotates with a constant angular velocity, as 
given in Tab. 3. The output shaft is loaded by the constant output 
torque (Tab. 3). Despite the cycloidal gearbox being loaded by 
a constant output torque, the torque at the output shaft is variable 
due to the geometry of the gearbox. In Figs. 7b, 15 and 16, the 
output torque was solved based on the time courses of the forces 
acting on the internal sleeves and the time courses of the dis-
placements of these sleeves. 

 
Fig. 2. Cycloidal gearbox models: designed in MSC Adams (a)  

and programmed in Fortran (b), where: 1 denotes the input shaft, 
2 denotes the output shaft, 3 denotes the internal cycloidal wheel, 
4 denotes the external cycloidal wheel, 5 denotes the external 
sleeve, 6 denotes the internal sleeve 

Tab. 1. Parameters of the cycloidal wheels defined in parametric Eq. (1) 

Parameter Description Value 

u(α) Horizontal coordinate - 

v(α) Vertical coordinate - 

α [rad] Equation parameter 0-2π 

e [m] Eccentricity 0.0028 

zk Number of external sleeves 16 

zs Number of lobes 15 

m Short-width coefficient 0.7 

q [m] Radius of the external sleeve 0.006 

Tab. 2. Masses and moments of inertia relative to the local coordinate  
             systems. The local coordinate systems are placed in the parts’  
             centre of gravity. The parts are rigid bodies 

Body 

 

Model parameters 

Mass [kg] 
Moment of inertia 

[kg·m2] 

Input shaft 0.2341 1.846·10-6 

Output shaft 1.6345 1.373·10-4 

Cycloidal wheel 0.5998 1.57538·10-4 

Internal sleeve 0.048 1.1013·10-5 

External sleeve 0.048 1.1013·10-5 

Tab. 3. Loads and excitations in the models 

Entity Value 

Angular velocity of the input shaft [Hz; rad/s; 
RPM] 

8.33; 52.34; 
500 

Torque applied at the output shaft [Nm] 22 
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Fig. 3. Dimensions of the cycloidal gearbox analysed using MSC Adams 

and the model programmed in Fortran 

3. MULTIBODY DYNAMICS METHODS  
USED IN THE MODEL PROGRAMMED IN FORTRAN 

The following system of Eq. (2) is solved in each integration 
subroutine step. The model contains 28 bodies and 29 joints, one 
of which is a driver joint and the others are revolute joints. The 
joints appear in the system of Eq. (2) as constraint equations, 
which are components of the Jacobian matrix. The method of 
Jacobian matrix formulation is described in [42], [43].  

[𝑀 −𝐷𝑇

𝐷 0
] [
�̈�
𝜆
] = [

𝐹
𝛾
],                               (2) 

where M is the mass matrix (contains masses and moments of 
inertia of the parts), D is the Jacobian matrix, 0 is the zero matrix,  

�̈� denotes solved accelerations, λ denotes solved reaction forces, 
F is the vector of applied forces and moments and γ is the right-
hand side vector of the acceleration equations. 

In the described model, the body-coordinate formulation was 
used. The constraint equations for the revolute joint and the drive 
joint are given in Eqs. (3) and (4), respectively. The Jacobian 
matrix satisfies (5), where the components of this matrix depend 
on the type of joint. Submatrices of the Jacobian matrix for the 
revolute joint are given in Eqs. (6) and (7) and those of the driver 
joint in Eq. (8). 

Φ𝑟𝑒𝑣 = 𝑟𝑃1 − 𝑟𝑃2 = 0,                               (3) 

where Φrev is the revolute joint constraint equation and rP1 and rP2 
are the position vector of the revolute joint attachment point on the 
1st and the 2nd body, respectively. The position vectors are given 
in the global coordinate system. 

Φ𝑑𝑟𝑖𝑣𝑒𝑟 = 𝜑 − 𝑓(𝑡) = 0,                              (4) 

where Φdriver is the driver joint constraint equation, φ  is the initial 
angle of a relative rotation of the connected parts and f(t) is the 
time course of the rotation angle between the connected parts (i.e. 
f(t)=ωt for the simulation of the motion with the constant angular 
velocity ω). 

𝐷 =
𝜕Φ

𝜕𝑢
,                                                 (5) 

where D is the Jacobian matrix, Φ is the constraint equation and 
u is the vector of body coordinates. 

𝐷1 = [
−1 0 −�̆�1𝑋
0 −1 −�̆�1𝑌

],                                  (6) 

𝐷2 = [
1 0 �̆�2𝑋
0 1 �̆�2𝑌

],                          (7) 

where D1 and D2 are the Jacobian submatrix corresponding to 
the 1st and the 2nd body connected to the revolute joint, respec-

tively; �̆� is the vector orthogonal to the joint attachment point local 
vector, relative to the centre of mass and X and Y are coordinates 
of the orthogonal vector. 

𝐷drv = [0 0 1],                                     (8) 

where Ddrv is the Jacobian submatrix corresponding to the driven 
body. The right-hand side acceleration equations vector contains 
0 in the components corresponding to the driver-joint. For the 
revolute joint, the right-hand side acceleration vector is solved 
according to Eq. (9). 

𝛾 = �̇̆�1�̇�1 − �̇̆�2�̇�2,                                      (9) 

where �̇�1 and �̇�2 are angular velocities of the 1st and the 2nd 
body attached to the revolute joint. 

4. CONTACT MODELLING 

Methods presented in the previous chapter were used to 
model three groups of parts in the cycloidal gearbox: (1) the input 
shaft with cycloidal wheels, (2) the output shaft with internal 
sleeves and (3) external sleeves. The gearbox should transfer the 
moment from the input shaft to the output shaft. Therefore contact 
should be set between mentioned parts. The Kelvin Voigt contact 
model based on the Hertzian theory with energy dissipation was 
programmed in four subroutines, which check the contact be-
tween two cycloidal wheels, external sleeves and internal sleeves. 
Subroutines that control the contact between the cycloidal wheels 
and the external sleeves solve the cycloidal wheel curvature in the 
contact point based on circular approximation from the three 
neighbouring points. Subroutines that check the contact between 
the cycloidal wheels and the internal sleeves use a constant 
stiffness coefficient because contact surfaces have a constant 
curvature radius. 

Cycloidal wheels and their holes were discretised in the con-
tact checking subroutines. The contact points on the cycloidal 
wheel boundary (Fig. 4) are placed with the constant angular 
increment α in Eq. (1). Convergence was obtained for 600 (rough 
analysis) and 4,000 (refined analysis) points in each cycloidal 
wheel and 20 (rough analysis) and 100 (refined analysis) in the 
cycloidal wheel holes in which the internal sleeves occur.  

In the contact checking subroutine, the list of points is created 
whose distance to the centre of the sleeve is less than the 
sleeve’s radius. The subroutine selects the point closest to the 
sleeve centre from the list of points being in contact. Two points, 
W and Q, detected by the contact checking subroutine are shown 
in Fig. 4. 

Given the external sleeve centre of mass coordinates and 
point W (Fig. 4) coordinates, the contact normal vector is comput-
ed according to Eq. (10): 

�⃗⃗� = [𝑊𝑥 − 𝑃𝑛𝑋,𝑊𝑦 − 𝑃𝑛𝑌],                                  (10) 

where WX and WY are coordinates of the selected cycloidal wheel 
point being in contact with the external sleeve and PnX and PnY are 
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coordinates of the given external sleeve centre of mass. To solve 
the friction force, the tangent contact vector (11) is solved using 
the rotation matrix R90 (12): 

𝑡 = 𝑅90 ∙ ‖�⃗� ‖,                                 (11) 

𝑅90 = [
cos(90°) −sin(90°)
sin(90°) cos(90°)

],                        (12) 

 
Fig. 4. Two points, W and Q, detected by the contact checking  

subroutine. 1 denotes the external sleeve, 2 denotes  
the cycloidal wheel, Q is a point on the external sleeve  
and W is a point on the cycloidal wheel 

The vector rpQ of the contact point Q position relative to the 
global coordinate system can be computed using Eq. (13). The 
linear velocity �̇�𝑐𝑊  of the point W can be computed using Eq. (14) 
with the cycloidal wheel rotation matrix specified in Eq. (15): 

𝑟𝑝𝑄 = 𝑟𝑝 + 𝑅𝑒𝑥𝑠𝑙 ∙ ‖�⃗� ‖,                        (13) 

�̇�𝑐𝑊 = �̇�𝑐 + �̇�𝑐 ∙ 𝑠𝑐𝑊 ,                                   (14) 

𝐴𝑐 = [
cos(𝜑𝑐) −sin(𝜑𝑐)
sin(𝜑𝑐) cos(𝜑𝑐)

],                          (15) 

where rp is the vector of the external sleeves’ centre of mass 
localisation relative to the global coordinate system, Rexsl is the 

radius of the external sleeve, ‖�⃗� ‖ is the contact normal vector 
with normalised length, AC is the rotation matrix of the cycloidal 
wheel, 𝜑𝑐  is the angle of cycloidal wheel rotation, scW is the local 
vector of the contact point W position relative to the cycloidal 

wheel centre of mass and �̇�𝑐  is the linear velocity vector of the 
cycloidal wheels’ centre of mass. 

The normalised contact normal velocity is given in Eq. (16). 
The linear velocity (17) of the Q point can be computed by differ-
entiating Eq. (13) and substituting Eq. (16). Contact normal veloci-
ty and contact tangential velocity can be solved using Eqs. (18) 
and (19) based on Eqs. (10), (11), (14) and (17): 

‖�⃗� ̇‖ = �̇�𝑐𝑊 − �̇�𝑝,                                     (16) 

�̇�𝑝𝑄 = �̇�𝑝 + 𝑅𝑒𝑥𝑠𝑙 ∙ ‖�⃗� ̇‖,                          (17) 

𝑣𝑛 = (�̇�𝑝𝑄 − �̇�𝑐𝑊) ∙ ‖�⃗� ‖,                             (18) 

𝑣𝑡 = (�̇�𝑝𝑄 − �̇�𝑐𝑊) ∙ ‖𝑡 ‖,                         (19) 

where 𝑣𝑛 is the contact normal velocity and 𝑣𝑡 is the contact 
tangential velocity. The theory that concerns velocity computation 
is discussed in detail in Refs [32], [44]. 

The contact normal velocity is used for the computation of the 
contact normal force (20), and the contact tangential velocity is 
used to compute the friction force (21). Contact normal force can 
be computed using various methods presented in Ref [44]. In the 
Fortran model, the models of Lee and Wang or Herbert and 
McWhannel [44] were implemented. Unfortunately, the conver-
gence was not obtained for the specified models designed for 
sphere-to-sphere contact and using initial contact velocity. In-
stead, the approach from MSC Adams documentation [45], [46] 
was used, and the Heaviside function was utilised in the modelling 
of the contact stiffness and contact damping (20). The Heaviside 
function S(t-t0) (22) is linear from 0 to t0. 

𝐹𝑛 = 𝑆(𝛿 − 0.00001) ∙ 𝐾 ∙ 𝛿1.5 + 

𝑆(𝛿 − 0.00001) ∙ 𝐶 ∙ 𝑣𝑛,            (20) 

𝐹𝑡 = −𝜇 ∙ 𝑆(𝑣𝑡 − 0.00005) ∙ 𝐹𝑛,                   (21) 

where S is the Heaviside step function (22), K denotes contact 

stiffness, C denotes contact damping, 𝑣𝑛 is the contact normal 

velocity, 𝑣𝑡 is the contact tangential velocity, μ is the static coeffi-
cient of friction and δ is the penetration depth (the distance be-
tween  W and Q points): 

𝑆(𝑡 − 𝑡0) = {

0𝑓𝑜𝑟𝑡 < 0
1

𝑡0
∙ 𝑡𝑓𝑜𝑟𝑡 ∈ (0, 𝑡0)

1𝑓𝑜𝑟𝑡 > 𝑡0

.                      (22) 

The stiffness coefficient (23) [32], [44] is solved based on the 
surface curvature of the contacting bodies and the parameters 
given in Eq. (24). The contact stiffness coefficient was multiplied 
by the H multiplier. The values of the H multiplier and contact 
damping C are presented in Tab. 4. 

𝐾 =
4𝐻

3𝜋(ℎ𝑐+ℎ𝑝)
√
𝑅𝑐∙𝑅𝑝

𝑅𝑐±𝑅𝑝
,                         (23) 

ℎ𝑐 =
1−𝜈𝑐

2

𝜋∙𝐸𝑐
, ℎ𝑝 =

1−𝜈𝑝
2

𝜋∙𝐸𝑝
,                          (24) 

where K denotes contact stiffness; H is the contact stiffness multi-

plier; 𝑅𝑐 is the radius of curvature of the cycloidal wheel surface; 

𝑅𝑝 is the radius of curvature of the external sleeve surface; 𝑣𝑐  

and 𝑣𝑝 are Poisson ratios of the cycloidal wheel and the external 

sleeve material, respectively; and 𝐸𝑐  and 𝐸𝑝 are Young moduli of 

the cycloidal wheel and the external sleeve, respectively. The sign 
in the denominator between 𝑅𝑐 and 𝑅𝑝 values depends on the 

contact with the cycloidal wheel pit or the cycloidal wheel lobe (the 
negative or positive radius of curvature of the cycloidal wheel). 

Tab. 4. Parameters used in contact modelling 

Parameter 
Values used by contact detection 

subroutines 
(external and internal sleeves) 

𝑣𝑐, 𝑣𝑝 0.3 

𝐸𝑐, 𝐸𝑝 [N/m2] 2·1011 

C [Ns/m] 8 

H 0.01 

Computed values of the forces and moments acting on the ex-
ternal sleeves, internal sleeves and cycloidal wheels are substi-
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tuted to the system of Eq. (2) in the F vector in each iteration of 
the 2nd order Runge Kutta algorithm. In the solution process, the 
constant integration step was used with 10-5 s. The analysis time 
was set to 0.6 s. 

5. RESULTS OF THE ANALYSIS IN THE FORTRAN MODEL 

One of the benefits of the transient model programmed in 
Fortran is the possibility to analyse a graph of every entity in the 
simulation process. MSC Adams allows the user to enter a con-
stant value of the contact stiffness. In the Fortran model, the value 
of the contact stiffness depends on the curvature of contacting 
bodies at the point of contact. Contact stiffness at the moment of 
contact between the cycloidal wheel and one of the external 
sleeves is shown in Fig. 5. In Fig. 6 the relative velocity of the 
contact points is shown at the time of contact with the same 
sleeve. Figs. 5 and 6 show periodically changing values of contact 
stiffness and relative velocity, which can differ in detail for the 
following periods. These differences arise from the numerical 
solution process and its inaccuracies. The mentioned entities 
have been shown in the time range when the contact between the 
external sleeve and the cycloidal wheel is active. In the rest of the 
period, the parts do not interfere with each other. 

 
Fig. 5. Contact stiffness in the time range, when contact between  

the external sleeve and cycloidal wheel occurs.  
Analysis without backlash 

 
Fig. 6. Relative velocity of the contact points on the cycloidal wheel  

and the external sleeve. Analysis without backlash 

Time courses of the input torque and output torque are shown 
in Figs. 7a and 7b respectively. It can be seen that despite the 
cycloidal gearbox being loaded by the constant output torque, the 
courses of the input and output torques oscillate due to the geom-
etry. Forces acting on the internal and external sleeves are shown 
in Figs. 8a and 8b, respectively. Figs. 7 and 8 depict time courses 
of the dynamical entities for different values of the contact damp-
ing. This parameter significantly influences the accuracy of re-

sults. The presented time courses oscillate with high amplitude for 
low contact damping values. Structural damping for steel is con-
sidered to be less than 0.01 of the critical damping. The presented 
analysis modelled contact as the Kelvin Voigt model with spring 
and damper (viscous damping). For accurate contact modelling in 
the numerical analysis, according to Ref [46], the damping should 
be set to one per cent of the contact stiffness coefficient (23). 

 

Fig. 7. Physical entities computed in the model programmed in Fortran: 
torque at the input shaft (a), torque at the output shaft (b)

 

Fig. 8. Physical entities computed in the model programmed in Fortran: 
the force acting on the internal sleeve (magnitude) (a), the force 
acting on the external sleeve (magnitude) (b) 

In the analysis presented in the current article, an increase in 
the contact damping above 8 Ns/m leads to non-convergence. 
The choice of the specified damping factor is motivated by the 
methodology of the contact modelling and is not related to the 
specific material. 

Fig. 9 (a, b) presents a comparison of the force acting on the 
internal sleeve and the external sleeve obtained with rough dis-
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cretisation (600 points for each cycloidal wheel) and refined anal-
ysis (4,000 points for each cycloidal wheel). The results obtained 
in MSC Adams were compared with the results from the transient 
model programmed in Fortran in Fig. 10 (a, b). 

 
Fig. 9. Results computed in the model implemented in Fortran for various 

numbers of points in the cycloidal wheel (600 points and 4000 
points): force acting on the internal sleeve (magnitude) (a),  
force acting on the external sleeve (magnitude) (b) 

 
Fig. 10. Results from MSC Adams and the model implemented  

in Fortran: force acting on the internal sleeve (magnitude) (a) 
and force acting on the external sleeve (magnitude) (b) 

6. BACKLASH INFLUENCE ON THE DYNAMIC 
PARAMETERS OF THE CYCLOIDAL GEARBOX 

Analysis of backlash was performed in the model implement-
ed in Fortran. In the analysed cycloidal gearbox, the artificial 
backlash was introduced in the form of design tolerance. The 

design tolerance value d increased the external sleeves’ radial 
position. In the analysis without backlash, the radius of their local-
isation is r. After the introduction of backlash, it is r+d (Fig. 11).  

 
Fig. 11. Backlash in the cycloidal gearbox modelled as the design  

tolerance d of the radial position r of the external sleeves 

The backlash has a decisive impact on the dynamic entities of 
the cycloidal gearbox (forces acting on the sleeves and torques at 
the shafts). An increase in backlash significantly influences the 
force at the external sleeve during cycloidal gearbox work. The 
higher the backlash, the shorter the contact duration between the 
external sleeve and the cycloidal wheel. High backlash 
(0.6·10-3 m) can increase the force magnitude by 50% relative to 
the force in the model without backlash (Fig. 12). 

There is less influence of the backlash on the value of the 
force acting on the internal sleeve. However, for the high back-
lash, a higher amplitude of the force at the internal sleeve oscilla-
tions can temporarily arise (Fig. 13). 

 
Fig. 12. Contact forces acting on the external sleeves as a function  

of backlash 

 
Fig. 13. Contact forces acting on the internal sleeves as a function  

of backlash 
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High backlash is unwanted in robotics applications, where re-
ducing the amplitude of oscillations is desirable. Figs. 14 and 15 
show an increase in the amplitude of the vibrations for the models 
with backlash. As mentioned before, in the cycloidal gearbox, the 
output torque’s current state depends on the previous iterations of 
the analysis. Therefore, the output torque can significantly change 
its amplitude of oscillations in time. Figs. 14 and 15 present that 
the amplitude of the vibrations in the analysis without backlash is 
considerably lower than that  with backlash, in general. Fig. 16 
shows a higher range of the time in the torque at the output shaft. 
The torques shown in Figs. 14-16 are random time functions with 
an unpredictable amplitude, which does not reach a steady state. 

 
Fig. 14. Torque at the input shaft as a function of backlash 

 
Fig. 15. Torque at the output shaft as a function of backlash 

 
Fig. 16. Torque at the output shaft as a function of backlash. Over  

a wider time range, the function was shown to be random 

In Fig. 17, the time courses of the contact stiffnesses are 
shown for various backlash values. For various backlashes, multi-
ple shifts in time of the contact stiffness are obtained. It is related 
to the contact periods between the external sleeve and the cy-
cloidal wheel. 

Relative velocities of the contact points (Fig. 4, points W and 
Q) for various values of backlash are shown in Fig. 18. For each 

relative velocity, its time course starts with oscillations. However, 
the time courses for the multiple backlashes overlap in the corre-
sponding time ranges. It shows that for high backlash, the contact 
between the cycloidal wheel and the external sleeve starts with 
a higher velocity, which leads to a higher impact and higher value 
of contact force (Fig. 12).  

 
Fig. 17. Contact stiffness between the cycloidal wheel and the external 

sleeves as a function of backlash 

 
Fig. 18. Relative velocity of the contact points on the cycloidal wheel  

and the external sleeve as a function of backlash 

7. DISCUSSION OF RESULTS 

The presented model implemented in Fortran offers a short 
analysis time, which allows using this model in the optimisation 
processes. For rough discretisation, the solution time is 4 min, 
while for refined analysis it is 25 min. Analysis results from MSC 
Adams presented in Fig. 10 (a, b) require more than 1 h for the 
solution process.  

In the model implemented in Fortran, various contact force 
models [44] were tested, but convergence was not obtained. 
These models were designed for two contacting spheres, while 
the contact in the analysed cycloidal gearbox is cylinder to cylin-
der. Therefore, the contact stiffness solved according to the Hertz-
ian model should be multiplied by the coefficient H=0.01 to satisfy 
convergence conditions. 

Analysis of various damping coefficients (Figs. 7 and 8) shows 
that contact damping significantly influences the quality of results. 
High oscillations emerge for low contact damping values, while 
more increased contact damping values guarantee smooth re-
sults. The MSC Adams results presented in Fig. 10 (a, b) show 
significant oscillations in the force diagrams for the internal and 
external sleeves. It can arise from the improper value of the con-
tact damping coefficient, which was set to the same value in the 
model implemented in Fortran. Analysis of the 3D model in MSC 
Adams requires another set of contact parameters (contact stiff-
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ness, contact damping and the penetration depth at which the 
contact damping coefficient reaches maximum value). 

The model implemented in Fortran can be used in the optimi-
sation process. Therefore it is beneficial to reduce the solution 
time of the single simulation. Unfortunately, Fig. 9 (a, b) presents 
that application of the discretisation, which is too rough leads to 
inaccurate results. The results for the 600 points of discretisation 
show significant oscillations of the force acting on the internal 
sleeve in Fig. 9a. The level of discretisation depends on the opti-
misation demand. 

The model programmed in Fortran allows for a more straight-
forward geometry parametrisation. It is much easier to modify the 
design tolerances of the model programmed in Fortran than to 
modify those in the engineering software (MSC Adams). Backlash 
introduced as the design tolerance of the position of the external 
sleeves has more impact on the forces acting on the external than 
on the internal sleeves. Time courses of the force acting on the 
internal sleeve in Fig. 13 for the high values of backlash have 
short-in-time oscillations at the peak values of force, which can be 
25% higher than peak values in the analysis without backlash. 

High backlash is unwanted in applications where the vibra-
tions should be reduced. With increased backlash, the cycloidal 
wheel comes into contact with the external sleeve with a higher 
velocity (Fig. 18), which leads to more significant impacts and an 
increase in the values of contact forces. In addition, higher effects 
on the external sleeves lead to more remarkable changes in the 
dynamic parameters of the cycloidal gearbox, which in turn lead to 
higher oscillations of the input and output torques (Figs. 14 
and 15). 

Multibody dynamics models provide more accurate results 
than static calculations or discrete models. Unfortunately, these 
models contain drawbacks of numerical analyses. At the initial 
stage correction of the initial parameters is performed. However, 
the rise of external forces at the first iteration of the simulation 
leads to disruption of the results. The beginning part of the time 
course of almost every entity in this model is noised. In the other 
part of the analysis, the model undergoes stabilisation, and the 
results are more accurate. It is also an issue in using a proper 
contact model, including contact stiffness and contact damping 
solution. Rapid changes in external forces occur at the beginning 
of the contact between the cycloidal wheel and the external 
sleeve. On the time courses of relative contact velocity or contact 
stiffness, oscillations with high amplitude can be seen. Fig. 6 
presents fluctuations in the range of 0.24-0.246 s at the beginning 
of the contact. The oscillations can also appear in the rapid 
changes of the curvature of the contacting bodies (Fig. 5, period 
0.265-0.28 s), which is additionally influenced by the discretisation 
of the cycloidal wheel. 

8. CONCLUSIONS 

Summing up the results, the model implemented in Fortran 
guarantees a fast solution and can be successfully used in the 
optimisation process. The discretisation of the model should be 
considered when the accuracy of the optimization results is an 
essential factor. The contact stiffness should be multiplied by the 
experimentally adjusted coefficient to allow convergence of the 
solution process. The contact damping coefficient can significantly 
influence the accuracy of the results. The backlash has an essen-
tial impact on contact forces.  

The main drawback of the numerical multibody dynamics 

analyses is oscillations, which could be caused by the initial rapid 
changes in the model parameters, discretisation and contact 
modelling methods. 
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