PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Permeability of N, P, K-fertilizer nutrient and water vapor through PLA, PLA/PS, and PLA/HA membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To collect permeability data and establish its database of fertilizer nutrients and water vapor through different polymer membranes for the development of polymer-coated fertilizer, the permeabilities of N-, P-, and K-nutrient from saturated aqueous of urea, NaH2PO4 and KCl solution and the permeability of water vapor through the membranes of poly lactic acid (PLA), its blends with polystyrene (PS), and its composites with humic acid (HA) particles were determined experimentally at the temperatures of 288, 298, and 308 K, respectively. The effects of the addition of PS and HA particles, temperature, and coating thickness on the permeability of fertilizer nutrient and water vapor were investigated. It was found that the addition of PS and HA increased the permeability for both the fertilizer nutrients and water vapor. The increase in temperature raised the permeability of N-, P-, and K-nutrient while decrease the permeability of water vapor in the range studied.
Rocznik
Strony
61--68
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Cotton Research Institute of Anhui Academy of Agricultural Sciences, 40 Nongke Road, Hefei, Anhui, China, 230001
autor
autor
  • Department of Chemical Engineering and Technology, College of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, China, 230009
autor
  • Cotton Research Institute of Anhui Academy of Agricultural Sciences, 40 Nongke Road, Hefei, Anhui, China, 230001
autor
  • Cotton Research Institute of Anhui Academy of Agricultural Sciences, 40 Nongke Road, Hefei, Anhui, China, 230001
autor
  • Cotton Research Institute of Anhui Academy of Agricultural Sciences, 40 Nongke Road, Hefei, Anhui, China, 230001
Bibliografia
  • 1. Watanabe, A., Takebayashi, Y., Ohtsubo, T. & Furukawa, M. (2009). Permeation of urea through various polyurethane membranes. Pest Managem. Sci. 65(11), 1233–1240. DOI: .
  • 2. Lan, R., Liu, Y., Wang, G., Wang, T., Kan, C. & Jin, Y. (2011). Experimental modeling of polymer latex spray coating for producing controlled-release urea. Particuology. 9(5), 510–516. DOI:
  • 3. Li, X., Bei, L., Sun, Z., Liu, K., Zhang, X. & Han, X. (2016). Permeation of fertilizer nutrients through polymer membrane: part I. Effect of P, K, and micronutrient fertilizer on permeability of urea. Asia-Pacific J. Chem. Engin. 11(2), 305–313. DOI: .
  • 4. Deng, X.N., Liu, K., Han, X., Hu, X. & Zheng, S. (2018). Permeability of p and k-nutrient through polystyrene membrane from aqueous solutions of urea + KH2PO4. Polish J. Chem. Technol. 20(4), 113–122. DOI: .
  • 5. Trinh, T.H., KuShaari, K., (2016). Dynamic of water absorption in controlled release fertilizer and its relationship with the release of nutrient. Proc. Engin. 148, 319–326. DOI: .
  • 6. Hes, L., Bernardo, C.A. & Queirós, M.A., (1996). A new method for the determination of water-vapour permeability of polymer films based on the evaluation of the heat of evaporation. Polymer Testing. 15(2), 189–201. DOI: .
  • 7. Sacher, E. (1983). Water permeation in polymer films. V. Parylene D. J. Appl. Polym. Sci. 28(4), 1535–1537. DOI: .
  • 8. Wu, Y.L., Li, G.M., Li, J.F. & Liu, J. (2007). Transfer behavior of water vapor in polymer membranes and dehumidification of gases by membrane separation. Membrane Sci. & Technol. 03(27), 1–5. DOI : .
  • 9. Zhu, W., Gora, L., Berg, A.W.C.V.D., Kapteijn, F., Jansen, J.C. & Moulijn, J.A. (2005). Water vapour separation from permanent gases by a zeolite-4A membrane. J. Membrane Sci. 253(1), 57–66. DOI: .
  • 10. Gardebjer, S., Bergstrand, A. & Larsson, A., (2014). A mechanistic approach to explain the relation between increased dispersion of surface modified cellulose nanocrystals and final porosity in biodegradable films. Eur. Polym. J. 57(0), 160–168. DOI: .
  • 11. (a) Chen, X., He, Y., Shi, C., Fu, W., Bi, S., Wang, Z., Chen, L. (2014). Temperature- and pH-responsive membranes based on poly (vinylidene fluoride) functionalized with microgels. J. Membrane Sci. 469(11), 447–457. DOI: ; (b) Frankenhaeuser, B., Moore, L.E. (1963). The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J. Physiol. 169(2), 431. DOI: .
  • 12. Dunkerley, E. & Schmidt, D. (2010). Effects of Composition, Orientation and Temperature on the O2 Permeability of Model Polymer/ClayNanocomposites. Macromolecules 43(24), 10536–10544. DOI: .
  • 13. Sun, Y.M., Huang, W.F. & Chang, C.C. (1999). Spray-coated and solution-cast ethylcellulose pseudolatex membranes. J. Membrane Sci. 157(2), 159–170. DOI: .
  • 14. Shaviv, A., Smadar, Raban, A. & Zaidel, E. (2003). Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. & Technol. 37, 2251. DOI: .
Uwagi
This work was supported by the Innovation Team Project of Anhui Academy of Agricultural Sciences (2020YL052).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28e43ea3-5301-4542-9f5f-a5baf4fafd2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.