PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanotechnologia – nanomateriały, nanocząstki i wielofunkcyjne nanostruktury typu rdzeń/powłoka

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nanotechnology – nanomaterials, nanoparticles and multifunctional core/shell type nanostructures
Języki publikacji
PL EN
Abstrakty
PL
Nanotechnologia jest nauką zajmującą się otrzymywaniem i badaniem właściwości nanomateriałów. Nanomateriały często wykazują odmienne właściwości fizykochemiczne i biologiczne, w porównaniu do ich makroskopowych odpowiedników. Dodatkowo mogą one wykazywać interesujące zjawiska, takie jak ograniczenie kwantowe w półprzewodnikowych kropkach kwantowych, powierzchniowe efekty plazmoniczne, czy superparamagnetyzm. Interesującą grupą nanomateriałów są nanostruktury typu rdzeń/ powłoka (ang. core/shell) wykazujące jednocześnie właściwości zarówno rdzenia jak i powłoki.
EN
Nanotechnology is a science dealing with nanomaterials preparation and investigation of their properties. Nanomaterials often reveal altered physicochemical and biological properties in comparison to their bulk analogues. What is more, they can exhibit interesting phenomena, such as quantum confinement in semiconducting quantum dots, surface plasmonic effects or superparamagnetism. An interesting group of nanomaterials are core/shell type nanostructures, which simultaneously exhibit the properties of the core and the shell.
Czasopismo
Rocznik
Strony
766--775
Opis fizyczny
Bibliogr. 64 poz., rys.
Twórcy
autor
  • Wydział Chemii, Zakład Ziem Rzadkich, Uniwersytet im. Adama Mickiewicza w Poznaniu
Bibliografia
  • 1. Kelsal R. W., Hamley I. W., Geoghegan M.: Nanotechnologie. PWN Warszawa 2008, 19–29.
  • 2. Henglein A.: Q-Particles: Size Quantization Effects in Colloidal Semiconductors. Progr. Colloid Polym. Sci. 1987, 73, 1–3.
  • 3. Polizzi S., Battagliarin M., Bettinelli M., Speghini A., Fagherazzi G.: Investigation on Lanthanide-Doped Y2O3 Nanopowders Obtained by Wet Chemical Synthesis. J. Mater. Chem. 2002, 12, 742–747.
  • 4. Batlle X., Labarta A.; Finite-Size Effects in Fine Particles: Magnetic and Transport Properties. J. Phys. D Appl. Phys. 2002, 35, R15–R42.
  • 5. Ostrikov K., Neyts E. C., Meyyappan M.: Plasma Nanoscience: From Nano-Solids in Plasmas to Nano-Plasmas in Solids. Adv. Phys. 2013, 62, 113–224.
  • 6. Astruc D., Lu F., Aranzaes J. R.: Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed.
  • 2005, 44, 7852–7872.
  • 7. Liang Y., Li Y., Wang H., Zhou J., Wang J., Regier T., Dai H.: Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. Nat. Mater. 2011, 10, 780–786.
  • 8. Tang Z., Kotov N., Giersig M.: Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 2002, 297, 237–240.
  • 9. Chander H.: Development of nanophosphors - A Review. Mater. Sci. Eng. R Rep. 2005, 49, 113–155.
  • 10. Yang L., Motohisa J., Takeda J., Tomioka K., Fukui T.: Size-Dependent Photoluminescence of Hexagonal Nanopillars with Single InGaAs∕GaAs Quantum Wells Fabricated by Selective-Area Metal Organic Vapor Phase Epitaxy. Appl. Phys. Lett. 2006, 89, 203110.
  • 11. Yu H., Li J., Loomis R. A., Wang L.-W., Buhro W. E.: Two- versus Three-Dimensional Quantum Confinement in Indium Phosphide Wires and Dots. Nat. Mater. 2003, 2, 517–520.
  • 12. Alivisatos A. P.: Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933–937.
  • 13. Tvrdy K., Kamat P. V.: Substrate Driven Photochemistry of CdSe Quantum Dot Films: Charge Injection and Irreversible Transformations on Oxide Surfaces. J. Phys. Chem. A. 2009, 113, 3765–3772.
  • 14. Fojtik A.: Quantum State of Small Semiconductor Clusters – “exciton”, Radiation Chemistry of “Q-State” Particles. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 1986, 28, 463-465.
  • 15. Weller H., Schmidt H.M., Koch U., Fojtik A., H. A.: Onset of Light Absoption as a Function of Size of Extremely Small CdS Particles. Chem. Phys. Letters 1986, 124, 557–560.
  • 16. Link S.; El-Sayed M. A.: Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.
  • 17. Barnes W. L., Dereux A., Ebbesen T. W.: Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830.
  • 18. Skumryev V., Stoyanov S., Zhang Y., Hadjipanayis G., Givord D., Nogués J.: Beating the Superparamagnetic Limit with Exchange Bias. Nature 2003, 423, 850–853.
  • 19. Laurent S., Forge D., Port M., Roch A., Robic C., Vander E. L., Muller R. N.: Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110.
  • 20. Love S. A., Maurer-Jones M. A., Thompson J. W., Lin Y.-S., Haynes C. L.: Assessing Nanoparticle Toxicity. Annu. Rev. Anal. Chem. 2012, 5, 181–205.
  • 21. Park M. V. D. Z., Neigh A. M., Vermeulen J. P., Fonteyne L. J. J., Verharen H. W., Briedé J. J., Loveren H., Jong W. H.: The Effect of Particle Size on the Cytotoxicity, Inflammation, Developmental Toxicity and Genotoxicity of Silver Nanoparticles. Biomaterials 2011, 32, 9810–9817.
  • 22. Gagné F., Maysinger D., André C., Blaise C.: Cytotoxicity of Aged Cadmium-Telluride Quantum Dots to Rainbow Trout Hepatocytes. Nanotoxicology 2008, 2, 113–120.
  • 23. Kirchner C., Liedl T., Kudera S., Pellegrino T., Muñoz J. A., Gaub H. E., Stölzle S., Fertig N., Parak W. J.: Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Lett. 2005, 5, 331–338.
  • 24. Shahbazi M.-A., Hamidi M., Mäkilä E. M., Zhang H., Almeida P. V, Kaasalainen M., Salonen J. J., Hirvonen J. T., Santos H.: The Mechanisms of Surface Chemistry Effects of Mesoporous Silicon Nanoparticles on Immunotoxicity and Biocompatibility. Biomaterials 2013, 34, 7776–7789.
  • 25. Zhao Y., Sun X., Zhang G., Trewyn B. G., Slowing I. I., Lin V. S.-Y.: Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects. ACS Nano 2011, 5, 1366–1375.
  • 26. Borm P. J. A., Kreyling W.: Toxicological Hazards of Inhaled Nanoparticles – Potential Implications for Drug Delivery. J. Nanosci. Nanotech. 2004, 4, 521–531.
  • 27. Geiser M., Kreyling W. G.: Deposition and Biokinetics of Inhaled Nanoparticles. Part. Fibre Toxicol. 2010, 7, 2.
  • 28. Fröhlich E.: Cellular Targets and Mechanisms in the Cytotoxic Action of Non- Biodegradable Engineered Nanoparticles. Curr. Drug Metab. 2013, 14, 976–988.
  • 29. Stoccoro A., Karlsson H. L., Coppedè F., Migliore L.: Epigenetic Effects of Nano-Sized Materials. Toxicology 2013, 313, 3–14.
  • 30. Yang X., Liu J., He H., Zhou L., Gong C., Wang X., Yang L., Yuan J., Huang H., He L.: SiO2 Nanoparticles Induce Cytotoxicity and Protein Expression Alteration in HaCaT Cells. Part Fibre Toxicol. 2010, 7, 1–12.
  • 31. Shenhar R., Rotello V. M.: Nanoparticles: Scaffolds and Building Blocks. Acc. Chem. Res. 2003, 36, 549–561.
  • 32. Lu W., Lieber C. M.: Nanoelectronics from the Bottom Up. Nat. Mater. 2007, 6, 841–850.
  • 33. Yadav R. S., Shukla V. K., Mishra P., Pandey S. K., Kumar K., Baranwal V., Kumar M., Pandey A. C.: Enhanced Blue Luminescence in BaMgAl10O17:Eu, Er, Nd Nanophosphor for PDPs and Mercury Free Fluorescent Lamps. J. Alloy. Compd. 2013, 547, 1–4.
  • 34. Xing Y., Chaudry Q., Shen C., Kong K. Y., Zhau H. E., Chung L. W.; Petros J., O’Regan R. M., Yezhelyev M. V., Simons J. W.: Bioconjugated Quantum Dots for Multiplexed and Quantitative Immunohistochemistry. Nat. Protoc. 2007, 2, 1152–1165.
  • 35. Runowski M., Dąbrowska K., Grzyb T., Miernikiewicz P., Lis S.: Core/shell-Type Nanorods of Tb3+-Doped LaPO4, Modified with Amine Groups, Revealing Reduced Cytotoxicity. J. Nanopart. Res. 2013, 15, 2068–2083.
  • 36. Grzyb T., Runowski M., Dąbrowska K., Giersig M., Lis S.: Structural, Spectroscopic and Cytotoxicity Studies of TbF3@CeF3 and TbF3@CeF3@SiO2 Nanocrystals. J. Nanopart. Res. 2013, 15, 1958–1972.
  • 37. Wang F., Banerjee D., Liu Y., Chen X., Liu X.: Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy. Analyst 2010, 135, 1839–1854.
  • 38. Chen X., Zhao Z., Jiang M., Que D., Shi S., Zheng N.: Preparation and Photodynamic Therapy Application of NaYF4:Yb, Tm–NaYF4:Yb, Er Multifunctional Upconverting Nanoparticles. New J. Chem. 2013, 37, 1782–1788.
  • 39. Wang F., Fan X., Wang M., Zhang Y.: Multicolour PEI/NaGdF4:Ce3+ ,Ln3+ Nanocrystals by Single-Wavelength Excitation. Nanotechnology 2007, 18, 25701–25706.
  • 40. Grzyb T., Runowski M., Szczeszak A., Lis S.: Structural, Morphological and Spectroscopic Properties of Eu3+-Doped Rare Earth Fluorides Synthesized by the Hydrothermalmethod. J. Solid State Chem. 2013, 200, 76–83.
  • 41. Wang G., Peng Q., Li Y.: Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications. Acc. Chem. Res. 2011, 44, 322–332.
  • 42. Haidar Z. S.: Bio-Inspired/-Functional Colloidal Core-Shell Polymeric-Based NanoSystems: Technology Promise in Tissue Engineering, Bioimaging and NanoMedicine. Polymers 2010, 2, 323–352.
  • 43. Liu Y., Tu D., Zhu H., Chen X.: Lanthanide-Doped Luminescent Nanoprobes: Controlled Synthesis, Optical Spectroscopy, and Bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958.
  • 44. Zhang D., Chen C., Wang F., Zhang D. M.: Optical Gain and Upconversion Luminescence in LaF3: Er, Yb Nanoparticles-Doped Organic–inorganic Hybrid Materials Waveguide Amplifier. Appl. Phys. B 2009, 98, 791–795.
  • 45. Kulpinski P., Namyslak M., Grzyb T., Lis S.: Luminescent Cellulose Fibers Activated by Eu3+-Doped Nanoparticles. Cellulose 2012, 19, 1271–1278.
  • 46. Jun Y., Choi J., Cheon J.: Heterostructured Magnetic Nanoparticles: Their Versatility and High Performance Capabilities. ChemComm 2007, 28, 1203–1214.
  • 47. Wang J., Zheng S., Shao Y., Liu J., Xu Z., Zhu D.: Amino-Functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. J. Colloid Interface Sci. 2010, 349, 293–299.
  • 48. Xu H., Aguilar Z. P., Yang L., Kuang M., Duan H., Xiong Y., Wei H., Wang A.: Antibody Conjugated Magnetic Iron Oxide Nanoparticles for Cancer Cell Separation in Fresh Whole Blood. Biomaterials 2011, 32, 9758–9765.
  • 49. Billotey C., Wilhelm C., Devaud M., Bacri J. C., Bittoun J., Gazeau F.: Cell Internalization of Anionic Maghemite Nanoparticles: Quantitative Effect on Magnetic Resonance Imaging. Magn. Reson. Med. 2003, 49, 646–654.
  • 50. Hsu S., Lin Y. Y., Huang S., Lem K. W., Nguyen D. H., Lee D. S.: Synthesis of Water-Dispersible Zinc Oxide Quantum Dots with Antibacterial Activity and Low Cytotoxicity for Cell Labeling. Nanotechnology 2013, 24, 475102–475112.
  • 51. Tang Y., Han S., Liu H., Chen X., Huang L., Li X., Zhang J.: The Role of Surface Chemistry in Determining in Vivo Biodistribution and Toxicity of CdSe/ZnS Core-Shell Quantum Dots. Biomaterials 2013, 34, 8741–55.
  • 52. Grzyb T., Runowski M., Szczeszak A., Lis S.: Influence of Matrix on the Luminescent and Structural Properties of Glycerine-Capped, Tb3+-Doped Fluoride Nanocrystals. J. Phys. Chem. C 2012, 116, 17188−17196.
  • 53. Runowski M., Lis S.: Preparation and Photophysical Properties of Luminescent Nanoparticles Based on Lanthanide Doped Fluorides (LaF3:Ce3+, Gd3+, Eu3+), Obtained in the Presence of Different Surfactants. J. Alloy. Comp. 2014, 597, 63–71.
  • 54. Runowski M., Balabhadra S., Lis S.: Nanosized Complex Fluorides Based on Eu3+ Doped Sr2LnF7 (Ln=La, Gd). J. Rare Earths 2014, 32, 242–247.
  • 55. Ramli R. A., Laftah W. A., Hashim S.: Core–shell Polymers: A Review. RSC Adv. 2013, 3, 15543–15565
  • 56. Pang S. C., Kho S. Y., Chin S. F.: Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles. J. Nanomater. 2012, 2012, 1–6.
  • 57. Stöber W.: Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69.
  • 58. Park J.-N., Zhang P., Hu Y.-S., McFarland E.: W. Synthesis and Characterization of Sintering-Resistant Silica-Encapsulated Fe3O4 Magnetic Nanoparticles Active for Oxidation and Chemical Looping Combustion. Nanotechnology 2010, 21, 225708–225716.
  • 59. Runowski M., Grzyb T., Lis S., Bifunctional Luminescent and Magnetic Core/shell Type Nanostructures Fe3O4@CeF3:Tb3+/SiO2. J. Rare Earths 2011, 29,1117–1122.
  • 60. Warren C. W., Chan P. D.: Bio-Applications of Nanoparticles. Springer S, New York, 2009.
  • 61. Mello M. R., Phanon D., Silveira G. Q., Llewellyn P. L., Ronconi C. M.: Amine-Modified MCM-41 Mesoporous Silica for Carbon Dioxide Capture. Microporous Mesoporous Mater. 2011, 143, 174–179.
  • 62. Jal P. K., Patel S., Mishra B. K.: Chemical Modification of Silica Surface by Immobilization of Functional Groups for Extractive Concentration of Metal Ions. Talanta 2004, 62, 1005–1028.
  • 63. Yang P., Quan Z., Hou Z., Li C., Kang X., Cheng Z., Lin J.: A Magnetic, Luminescent and Mesoporous Core-Shell Structured Composite Material as Drug Carrier. Biomaterials 2009, 30, 4786–4795.
  • 64. Nabeshi H., Yoshikawa T., Arimori A., Yoshida T., Tochigi S., Hirai T., Akase T., Nagano K., Abe Y., Kamada H.: Effect of Surface Properties of Silica Nanoparticles on Their Cytotoxicity and Cellular Distribution in Murine Macrophages. Nanoscale Res. Lett. 2011, 6, 93–98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-28df0a2f-3a18-497d-8e54-9efdf60831bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.