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Abstract

The paper describes the relations of speech signal representation in the layers of the con-
volutional neural network. Using activation maps determined by the Grad-CAM algo-
rithm, energy distribution in the time–frequency space and their relationship with prosodic
properties of the considered emotional utterances have been analysed. After preliminary
experiments with the expressive speech classification task, we have selected the CQT-96
time–frequency representation. Also, we have used a custom CNN architecture with three
convolutional layers in the main experimental phase of the study. Based on the performed
analysis, we show the relationship between activation levels and changes in the voiced
parts of the fundamental frequency trajectories. As a result, the relationships between the
individual activation maps, energy distribution, and fundamental frequency trajectories
for six emotional states were described. The results show that the convolutional neural
network in the learning process uses similar fragments from time–frequency representa-
tion, which are also related to the prosodic properties of emotional speech utterances. We
also analysed the relations of the obtained activation maps with time-domain envelopes.
It allowed observing the importance of the speech signals energy in classifying individual
emotional states. Finally, we compared the energy distribution of the CQT representation
in relation to the regions’ energy overlapping with masks of individual emotional states.
In the result, we obtained information on the variability of energy distributions in the
selected signal representation speech for particular emotions.
Keywords: convolutional neural networks, emotion recognition, audio features analysis,
explainable machine learning

1 Introduction

Expressive speech, as the ability to express our
feelings, is an essential component of effective in-
terpersonal communication. The emotional state
in the spoken statement can improve the interac-
tion process in dialogue systems and may have a

wide range of applications in voice-based human-
computer interaction systems. Also, the prosodic
content of the expressive speech strongly relates to
the speaker’s personality, and it can be used in mul-
timodal biometric systems. In its basic form, the au-
tomatic classification of the expressive speech sys-
tem is built based on a typical machine learning ap-
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proach. In such a case, from a speech signal, a fea-
ture extraction phase is performed to create feature
space, and then classic machine learning methods
are used to generate a model and perform the clas-
sification. However, nowadays, such a process is
replaced by the deep learning paradigm. This ap-
proach leads to higher classification efficiency com-
pared to traditional machine learning techniques.
The main factor causing this effect is unsupervised
learning, where data attributes are determined auto-
matically in the learning process.

The problem with this approach is that various
neural network architectures lead to different repre-
sentations in feature space and, hence to other dis-
criminant properties for the same data source. A
change in network architecture is needed to increase
the classification accuracy and lead to a different
signal representation. Another aspect related to this
approach is the difficulty of defining dependencies
of the internal representations of individual layers
of the neural network and their relationship with the
physical properties of the source signals. In such a
case, analysing such systems is challenging in terms
of optimisation, new input data, and robustness to
acquisition conditions to keep or increase the clas-
sification effectiveness. On the other side, there is
a lack of confidence in the results obtained with the
use of neural networks because there are difficulties
in finding relationships with the physical properties
of the analysed phenomena and the possibility of
explaining interactions between real objects.

Additionally, it is difficult to determine the sys-
tem’s effectiveness in the delivery of incomplete or
distorted data input. There are also difficulties in
determining the situation based on whose system
makes decisions based on the impact of each at-
tribute on the classification score. In actual condi-
tions, interpreting the machine learning system is
often necessary to increase confidence in his be-
haviour. The degree of interpretability of the model
and the resulting classification accuracy compro-
mise in a situation where the constraints resulting
from functionalities are introduced into the machine
learning model. Additionally, the functionality of
deep neural networks is dependent on many non-
linear relationships between attributes in the feature
space, which makes the explanation process of their
mechanisms is difficult.

The main properties of speech signals include
prosody and the speaker’s anatomical properties
based on fundamental frequency and resonances of
the vocal tract. The temporal dynamics of the fun-
damental frequency constitute the basic informa-
tion about the emotional load in spoken utterances.
Therefore, this study presents the relationships be-
tween the layers of the convolutional networks and
prosodic changes in emotional statements based on
the dynamics of fundamental frequency trajectory.

Recently, a problem of interpretability [1] of the
mechanisms leading to high classification accuracy
obtained by the deep neural networks (DNN) ap-
pears more and more often in literature. The most
intuitive approach to understanding how the neural
network works is the visualization of feature layers
in the network [2]. Using the proposed visualization
technique, there is a possibility to tune the network
architecture and diagnose possible performance is-
sues. An analysis of the latent space to decrease
computation cost and to determine its influence on
the model is presented in [3]. The authors used the
clustering of emotions in the latent space to analyse
model behaviour. In [4], authors proposed a method
to modify the convolutional neural network to an in-
terpretable version, where each filter in layers rep-
resents a defined object part. In that way, the net-
work automatically assigns each filter to an object
part of the learning process and results in a better
understanding of the results obtained in the learn-
ing process. Authors in [5] proposed interpretabil-
ity measures for speech sentences and showed their
qualitative and quantitative effectiveness. The anal-
ysis showed the connections between hidden unit
vectors and prosody features by grouping them into
different classes. Another interpretation technique
applied to the urban sound classification task is pre-
sented in [6]. The authors used two audio rep-
resentations to analyse DNN with layer-wise rele-
vance propagation. The result determines the fre-
quency content assigned with high relevance in fea-
ture sets and characterizes the high discriminative
information. An interpretable group convolutional
neural network (IG-CNN) was proposed in [7]. The
presented mechanism is based on the separation of
the learning processes of interpretable representa-
tion and autonomous representations. The proposed
model outperforms the baseline of several popular
datasets with emotional speech. A method to visu-
alize and interpret intermediate layers in convolu-
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tional neural networks trained on raw speech sig-
nals is presented in [8]. The analysis of internal
representations was performed using two architec-
tures: WaveGan and ciwGAN. The interpretation
concerned three acoustic properties of speech: pe-
riodic vibration, aperiodic vibration, and silence.
As a result, the proposed visualization and inter-
pretation approach for layers in the neural net-
work make it possible to determine speech signals’
prosodic properties. Also, using GAN-based ar-
chitecture, the same authors in [9] show how to
use the proposed method to perform unsupervised
acoustic word classification. Because the informa-
tion contained in individual layers of the convolu-
tional neural network and architecture itself plays
an essential role in data classification performance,
an effect of depth and width on the analysis of the
learned representations are presented in work [10].
In the other work [11], the authors present a multi-
modal architecture for emotion recognition, which
contains two inputs for visual modality and speech
as a raw waveform. As a part of the research, the
authors compare cell activations from the proposed
model and prosodic features. The results show that
the network in the training process picks the in-
formation about energy, loudness, and fundamen-
tal frequency. Another work [12] proposes a set
of techniques to interpret and visualize intermedi-
ate layers in generative CNNs trained on raw speech
data. As a result, the authors show what properties
of speech, like intensity or fundamental frequency,
are encoded in the individual layers.

In this work, we have compared the time–
frequency space selected by activation maps with
the fundamental frequency trajectory dynamics and
time-domain envelopes of speech signals. The key
contributions of this paper include:

(I) A new technique for interpreting and visualizing
knowledge of convolutional neural network;

(II) Use of the proposed technique to find out what
information the convolutional neural network
takes into account while classifying emotions;

(III) An illustration of the relationship between the
fundamental frequency of speech signal and the
decision process of convolutional neural net-
work.

The rest of the paper is organized as follows.
The methods of the proposed work, architecture of
the neural network, and audio data used in experi-
ments are explained in Section 2. Section 3 and its
subsections contained descriptions of the performed
experiments and an analysis of the results. Finally,
the results are concluded in section 4.

2 Methodology

In the analysis of the structure of the convo-
lutional layers, the number of parameter variables
has been deliberately limited to reduce variability
in the generated activation maps for time–frequency
structures. These limitations are influenced by the
choice of a simple network architecture and the
method of dividing the source data. An essential
element of this study is generating activation maps,
which can be divided into several stages presented
in Figure 1. In the first step, the selected time–
frequency representation is generated for all record-
ings from the emotional speech database. Then, the
audio data set is divided into two groups, which
are processed independently in further stages. The
first group includes representations of recordings
from men, while the second group is women. Then,
these groups are divided into three subsets: training,
validation, and testing. This division is performed
taking into account emotional states and speakers.
Data from each speaker are grouped according to
emotional states. Then, each resulting subgroup is
divided into proportions of 50%, 25%, and 25% for
the training, validation, and test sets, respectively.
As a result, each of the three subsets contains data in
equal proportions representing particular emotions
and speakers. In the next stage, the proposed convo-
lutional network architecture models are prepared
and trained based on train and validation subsets.
At this stage, due to the high randomness of opera-
tions in the training process, resulting, among other
things, from the Dropout operation and use of GPU,
ten different models are generated (K1,K2, . . . ,K10)
each separately for data from women and men. The
scope of the obtained classification efficiency of the
generated models for test subsets is shown in Fig-
ure 2. Based on the generated models and the se-
lected method, activation maps (Grad-CAM), ac-
tivation maps G are generated for individual data
in the test subsets. Then, two groups of emotional
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Figure 1. Mechanism for determining activation maps and generalized activation masks.

Figure 2. Classification accuracy for all models: females (a), males (b).
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masks are formed based on the obtained activation
maps. In the first group, masks R are determined as
a sum of individual map activations from the model
with the highest classification level. This sum is re-
alized according to the following equation Eq. 1:

R(L,k) =
Z

∑
n=1

G(L,k)
n , (1)

where R and G are mask and activation maps gen-
erated based on the model k, L is an emotional state
(A - anger, B - boredom, F - fear, N - neutral, H
- happiness and S - sadness), Z is the number of
samples in a test subset of a given emotion that are
correctly classified. The second group of masks R̂ is
generated based on the sum of masks of individual
emotion from all models according to Eq. 2:

R̂(L) =
10

∑
k=1

R(L,k). (2)

In Figure 3, example masks for selected emotional
states are depicted, wherein the top row contains
masks with the first group R, and in the bottom,
masks from the second group R̂.

Figure 5. Examples of audio features: CQT-96
(top panel), fundamental frequency F0 contour

(bottom panel).

As can be seen, the masks from both groups
are very similar. Therefore, for further research,
we decided to use only activation maps and masks
from models with the highest levels of classifica-
tion for women and men, their confusion matrices
are shown in Figure 4.

2.1 Audio features

According to our previous work [13], where we
tested the popular representations of audio signals
with a group of several neural networks, we have se-
lected a constant-Q spectrogram with 96 bins (CQT-
96). We have chosen it because we obtained the
best classification performance for this represen-
tation and two datasets with emotional sentences
[14, 15]. For the constant-Q spectrogram, the fre-
quency distribution is geometric and the ratio of the
band’s centre frequency to its width is constant. As
a result, the resulting frequency scale has a differ-
ent accuracy reproduction in the low and medium
frequency range compared to Mel scale [16]. Al-
though such a representation was initially proposed
for reproducing the Western musical scale [17], the
resolution spectrum in the frequency range up to
4kHz of several Hz can also be used for speech sig-
nals. For this reason, using features of emotional
speech built based on the CQT spectrogram leads
to higher classification accuracy than using the Mel
spectrogram [13].

To describe the representation obtained in the
neural network learning process for emotional
speech signals, we decided to use prosody infor-
mation by calculating the variability of fundamental
frequency (F0) for spoken sentences and comparing
it with time–frequency information marked by ac-
tivation maps. In Figure 5 (top panel) a CQT-96
spectrogram is depicted for example emotional sen-
tence where in Figure 5 (bottom panel) the trajec-
tory of fundamental frequency (F0) is shown The
estimation of F0 values was performed using the al-
gorithm presented in [18].

2.2 Class activation map

Process of determining activation maps for in-
dividual samples using the Grad-CAM [19] algo-
rithm can be broken down into four smaller stages.
In the beginning, the A feature matrix is retrieved
from the selected layer of the convolutional model
for a given sample and the output vector y of the
model. We used a features matrix generated based
on the last convolution layer of the model because,
as the authors of the Grad-CAM method assume,
this layer may be the source of the most important
information obtained by the model in the training
process [19]. The three-dimensional matrix A has
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Figure 3. Examples of calculated masks for three emotional states: anger (a), neutral (b) and sadness (c).
Top row contains masks for the best model, bottom row the sum of masks for all models.

Figure 4. Confusion matrices for the best models: females (a), males (b).
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size H ×W ×K. The H denotes height, W is width,
and K is the number of channels. In contrast, the
output of the y model is a vector of length corre-
sponding to the number of classes. The next step is
determining the K gradients for each feature chan-
nel relative to the selected c class. In this case, c
was the class of individual samples. This operation
can be written as follows:

∇k =
δyc

δA(k)
, (3)

where k are channel numbers, yc is the model out-
put for the c class, and A(k) is the feature map from
channel k. In our experiments, we performed this
operation using the GradientTape algorithm from
the TensorFlow library [20]. The resulting gradi-
ents have the same size as feature maps, H ×W .
Then, the weights for individual channels αk are
determined by averaging the gradient values across
rows and columns. As a result, a vector of length K
is computed whose values represent the mean gra-
dient intensity for individual channels. The process
for determining the coefficients describes the fol-
lowing formula:

αk =
1
Z

H

∑
i=1

W

∑
j=1

∇i, j,k, (4)

where the value of Z equals the product of H and
W . In the last step, the final class activation map G
is determined. It is obtained by applying a weighted
sum feature map A through channels, where coeffi-
cients αk are the weights of each k channel. The re-
sult is a matrix with dimensions of H ×W , which is
computed by applying ReLU [21] operation, which
zeroes values less than zero. This step can be de-
scribed by the formula 5:

G = ReLU

(
K

∑
k=1

αk ·A(k)

)
. (5)

The matrix G contains activation levels that define
the importance of the input data fragments in the
classification process. An example of the result ob-
tained with the Grad-CAM algorithm is presented
in Figure 6(a). The diagram shows an example acti-
vation map obtained with the Grad-CAM algorithm
while Figure 6(b) shows this low -dimension latent
space mapped to the time–frequency domain corre-
sponding to CQT representation using linear inter-
polation. As a result, it enables us to visualize the

importance of time–frequency components of CQT
representation in the classification process.

3 Experiments

In this section, we presented a description and
the results of the performed experiments1. Sec-
tions 3.1 and 3.2 contain information about the au-
dio database and CNN architecture we chose. In
section 3.3, we presented the central part of our ex-
periments, describing the methods we use to anal-
yse the activation maps.

3.1 Audio data

In our study, we used an audio database called
Berlin database of emotional speech [14]. We chose
it for the following reasons. Firstly, this database is
often used in research on emotional speech [22, 23]
and is widely available. Secondly, as presented by
the authors of [24], this database enables the highest
efficiency of classification (88.47% [25]) compared
to other databases, such as RAVDESS (87.5% [15,
26]) or IEMOCAP (75.60% [27, 28]). However,
unlike the TESS [29] database, which is classified
with an accuracy of 99.6% [30] contains longer ut-
terances, not just words with the same prefix. Fur-
thermore, the results of our earlier experiments [13]
show that using the selected database, we were
able to achieve the best classification efficiency
with popular architectures (DenseNet, ResNet, In-
ception, MobileNet).

The chosen database contains 535 sentences
in the German language, recorded as monophonic,
with a sample rate equal to 16 kHz. The utterances
are spoken by ten professional actors, including five
males aged 25, 26, 30, 31, and 32 years old, and
five females aged 21, 31, 32, 34, and 35 years old.
For the sake of the uneven distribution of the sam-
ples, we decided to remove the examples of dis-
gust emotional state and the samples from the actors
with ID equal to 09 and 12. The sentences were
removed because they had too few recordings for
some emotional states, which prevented them from
being evenly divided into training, testing, and vali-
dation subsets. As a result, 417 recordings were left
in the database. Table 1 shows the distribution of
recordings and the number of samples of individual
emotions and speakers after reduction.

1The complete results are available on https://github.com/staticvoice/convcam
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Figure 6. Examples of activation maps: raw activation map (a), scaled version to the size of original
CQT-96 representation size (b).

Table 1. Distribution of samples in the balanced data set.

Speaker ID Sadness Fear Happiness Neutral Boredom Anger Total

08 6 6 11 10 10 12 55
03 7 4 7 11 5 14 48
14 10 12 8 7 8 16 61
11 7 10 8 9 8 11 53
10 3 8 4 4 8 10 37
13 5 7 10 9 10 12 53
16 8 7 11 5 14 14 59
15 4 8 6 11 9 13 51

Total 50 62 65 66 72 102 417
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3.2 CNN architecture

Popular convolutional network architectures
consist of many convolutional layers, which re-
quire many arithmetical operations. It influences
the number of processed features and the compu-
tational complexity. To reduce the number of cal-
culations, various operations reducing the number
of parameters are used, such as MaxPooling [31].
However, such reductions cause maps of the last
features of the convolutional layers of these archi-
tectures to have a tiny size, which affects the size of
activation maps generated on their basis. For map-
ping activation maps, e.g., 3× 6 to representation
CQTs for which 96×202 were generated, requires
to use of interpolation of frequency axis of 3 values
to 96, which introduces inaccuracies in their repre-
sentation. We decided to use a simple convolutional
network Figure 7 where we used three 2D Convolu-
tional layers to relate the results of their operations
to a two-dimensional time–frequency plane. These
layers contain 64, 128, and 256 filters, with ReLU
activation function and kernel size equal to 3.

After each of them, there is a layer of MaxPool-
ing, where the first two reduce the size of feature
maps in only one dimension that corresponds to the
timeline, while the third, on the other hand, reduces
the number of features in both axes. The use of such
a scheme of reducing the number of features makes
it possible to obtain a map activation from the last
convolutional layer of size 90× 47, which allows
for a more accurate reference to the audio represen-
tation than would be in the case of the use of popu-
lar convolutional networks. Table 2 shows the size
of the activation maps of popular convolutional net-
works compared to the network used in this work.
The convolutional and max pooling layers are fol-
lowed by Flatten layer, Dense layer with 128 units,
ReLU activation function, and a Dropout layer with
a drop rate of 0.5.

The proposed architecture has the first linear
layer with 33914880 parameters compared to the
preceding layer (295168 parameters), creating a
bottleneck problem. We decided on such a solution
because our study concerns the analysis of the deci-
sion process of convolutional layers. Adding exces-
sive operations after the last convolutional layer for
data reduction could distort the influence of knowl-
edge from the convolution layers in the decision-
making process.

The last Dense layer has the number of units
corresponding to the number of classes and activa-
tion function Softmax. As an optimizer, we have
used ADAM algorithm with a learning factor equal
to 0.001 and a cross-entropy as a loss function.

3.3 Activation map analysis

A set of experiments was carried out to deter-
mine the relationships between the obtained activa-
tion maps with the physical properties of the speech
signal.

In this study, we used features such as the fun-
damental frequency, time domain envelope and en-
ergy distribution in the selected CQT representa-
tion to analyze the obtained activation maps. The
time-domain envelope of a speech signal is one of
the most basic components in the speech signal per-
ception process [36]. The temporal envelope of the
signal also reflects prosodic features such as speak-
ing rate or intonation [37]. F0 plays a fundamen-
tal role in the prosody of a given utterance [38]
and the perception of speech signals [39]. In ad-
dition, the frequency ranges of segments containing
voiced parts of speech signals convey the speaker’s
characteristics [40], such as gender, age, and health
[41]. Moreover, the variability of these segments
and the lengths between voiced and unvoiced parts
are one of the sources of the nature of the utter-
ance [42]. Both the envelope of the signal in the
time domain and the fundamental frequency vari-
ability in the time domain reflects the basic prop-
erties of the speech signal and its time–frequency
structure. Therefore, these parameters have been
used as a reference element when interpreting the
layers of convolutional neural networks trained for
emotional speech signals. In section 3.3.1, as a re-
sult of the importance analysis of speech signals
in the classification process, we presented the rela-
tions between the obtained activation maps and the
time domain envelopes for the considered record-
ings. Then, in section 3.3.2, to check the associ-
ation of F0 with emotional states in the classifica-
tion process, we compare the energy in F0 segments
of recordings with activation level corresponding
to fragments of their activation map on the time
axis. In the last part of the experiments (section
3.3.3), to investigate the variability of the energy
of the CQT representation for individual emotions,
we presented an analysis of the distribution of its
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Figure 7. Architecture of proposed SimpleNet convolutional neural network.

Table 2. Shapes of the last convolutional layers of selected CNN architectures.

SimpleNet VGG16 [32] ResNet50 [33] MobileNet [34] InceptionV3 [35]

Shape 90×47 6×12 3×7 3×6 1×4

total energy in relation to the energy of the areas
overlapping with the generated masks of individual
emotional states.

3.3.1 Time envelope analysis

To analyse the obtained matrices of the activa-
tion maps in the time domain, we reduced them to
a one-dimensional vector by summing its rows. Fi-
nally, for each activation map H ×W , the vector q
of length W was obtained.

q j =
H

∑
i=1

Gi j, (6)

where: j = 1, . . . ,W and i = 1, . . . ,H denotes
columns and rows of activation matrix G respec-
tively. Then, to be able to compare the obtained
activation map to the source signal for individual
recordings, we have determined the energy contour
Q in the time-domain using the following formula:

Qn =
K−1

∑
k=0

x(k+n ·K)2 , (7)

where x represents the input speech signal contain-
ing N samples, n = 0, . . . ,W − 1, K =

⌊ N
W

⌋
. The

frame length used in computing the energy contour
was equal to the size of the frame used in determin-
ing the CQT representation. The obtained contour
vectors Q consisted of the same number of elements
as the corresponding summed activation maps q. In
such a case, it is possible to use the RMSE measure
to compare them:

RMSE =

√
1
N

N−1

∑
n=0

(xn − yn)2, (8)

where: xn and yn are values of compared vectors,
and N is the length of both vectors. We decided to
use RMSE measure because, for identical vectors,
the value is equal to zero. Its value is higher as the
differences between elements of vectors are higher,
and it measures the vectors in the same units. Be-
fore calculate the RMSE, the q and Q vectors were
normalized. Cases where RMSE was the lowest
and the highest are shown in the figure 8. The top
row shows female recordings (left) and male (right),
for which the RMSE value was the lowest. Their
activation contour q and the Q envelope were the
closest to each other. The bottom row shows the
cases with the highest RMSE for which the activa-
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Figure 7. Architecture of proposed SimpleNet convolutional neural network.

Table 2. Shapes of the last convolutional layers of selected CNN architectures.

SimpleNet VGG16 [32] ResNet50 [33] MobileNet [34] InceptionV3 [35]

Shape 90×47 6×12 3×7 3×6 1×4

total energy in relation to the energy of the areas
overlapping with the generated masks of individual
emotional states.

3.3.1 Time envelope analysis

To analyse the obtained matrices of the activa-
tion maps in the time domain, we reduced them to
a one-dimensional vector by summing its rows. Fi-
nally, for each activation map H ×W , the vector q
of length W was obtained.

q j =
H

∑
i=1

Gi j, (6)

where: j = 1, . . . ,W and i = 1, . . . ,H denotes
columns and rows of activation matrix G respec-
tively. Then, to be able to compare the obtained
activation map to the source signal for individual
recordings, we have determined the energy contour
Q in the time-domain using the following formula:

Qn =
K−1

∑
k=0

x(k+n ·K)2 , (7)

where x represents the input speech signal contain-
ing N samples, n = 0, . . . ,W − 1, K =

⌊ N
W

⌋
. The

frame length used in computing the energy contour
was equal to the size of the frame used in determin-
ing the CQT representation. The obtained contour
vectors Q consisted of the same number of elements
as the corresponding summed activation maps q. In
such a case, it is possible to use the RMSE measure
to compare them:

RMSE =

√
1
N

N−1

∑
n=0

(xn − yn)2, (8)

where: xn and yn are values of compared vectors,
and N is the length of both vectors. We decided to
use RMSE measure because, for identical vectors,
the value is equal to zero. Its value is higher as the
differences between elements of vectors are higher,
and it measures the vectors in the same units. Be-
fore calculate the RMSE, the q and Q vectors were
normalized. Cases where RMSE was the lowest
and the highest are shown in the figure 8. The top
row shows female recordings (left) and male (right),
for which the RMSE value was the lowest. Their
activation contour q and the Q envelope were the
closest to each other. The bottom row shows the
cases with the highest RMSE for which the activa-
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Figure 8. Comparison of the time envelopes and activation trajectories with the lowest RMSE values:
females in sadness state (a), males in neutral state (b) and with the highest RMSE values: females in anger

state (c), males in neutral state (d).

Table 3. Statistical properties of the RMSE values between time envelope Q and the activation contour q
for all emotional states and genders.

Anger Boredom Fear Happiness Neutral Sadness

Female

min 0.086 0.079 0.078 0.108 0.061 0.060
max 0.347 0.140 0.291 0.181 0.248 0.137

mean 0.204 0.109 0.189 0.144 0.156 0.104
range 0.261 0.061 0.212 0.073 0.187 0.076

Male

min 0.142 0.101 0.290 0.215 0.084 0.228
max 0.299 0.194 0.290 0.326 0.333 0.243

mean 0.205 0.143 0.290 0.271 0.194 0.235
range 0.157 0.093 0.0 0.110 0.249 0.014

Figure 9. RMSE for all correctly classified samples between envelope Q and q: females (a), and males (b).
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tion contour q and the Q envelope differed the most.
The lowest RMSE values were obtained for record-
ings representing the sadness (Figure 8a) emotional
state for females equal to 0.06, and for males in neu-
tral (Figure 8b) state the RMSE value was equal to
0.08. On the other hand, the highest RMSE values
belonging to female sentence in anger state (Fig-
ure 8c) and equal to 0.34. In the case of males, the
RMSE was equal to 0.33 for sadness (Figure 8d).
One of the reasons for high RMSE values may be
the low time resolution of the representation of ac-
tivation maps q, which is due to the architecture
of the used network and the scaling of the activa-
tion map to the size of the input CQT represen-
tation. An example of this case is illustrated in
Figure 8d, which shows a relatively complex enve-
lope of a recording whose large number of peaks
negatively affects the RMSE measure. The table 3
shows the full list of RMSE values for all emotional
states and both genders. Additionally, Figure 9 il-
lustrates the distribution of the RMSE measure for
all analysed recordings. As can be seen in the case
of females, the emotional state for which the RMSE
value was the lowest globally was sadness and bore-
dom, which also achieved the lowest RMSE values
in male recordings. These results may show that a
significant part of the information from the convolu-
tional network with the above-mentioned emotional
states occurs in the temporal representation of the
speech signal.

3.3.2 Dominant frequency trajectory in the ac-
tivation map

In the next step, we developed the method pre-
sented in Figure 10 for interpretation of the acti-
vation maps, which allowed us to analyse them in
the frequency domain. This method works based
on the fundamental frequency and enables a direct
comparison of the activation map of a given record-
ing with its F0 trajectory. The entire process can be
performed in the following five steps:

1. The selection of the columns of the activation
matrix Figure 10 (middle panel) corresponding
to the successive segments of F0 and being con-
sistent in time with it as depicted in Figure 10
(top panel).

2. Replace values in selected fragments below half
of the maximum value in a given column of the

activation matrix with zeros. As a result, this
will eliminate the ,,non-essential” elements of
the activation map. An example of the effect of
this operation is shown in

3. Figure 10 (middle panel), where the remaining
non -zero values are shown in grey.

4. The corresponding frequencies are selected for
each column of the activation matrix where they
have non-zero values. Consequently, for each
column in the selected segments, a vector is
created containing as many frequency values as
there were in the given column with non-zero
values.

5. For each vector, its average is calculated, which
gives the average frequency value for each of the
selected columns. This operation is represented
by the formula:

c j =
1
M

M

∑
i=1

R(Gi j), (9)

where j = 1, . . . ,W , c j denotes averaged fre-
quency of column j, M is the number of rows
containing non-zero values, G is the activation
matrix whereas R(·) is the function which re-
turns the frequency related to the cell of the ac-
tivation map.

6. In the last step, the frequency trajectory of the
activation map is created from the averaged val-
ues as depicted in Figure 10 (bottom graph) and
which can be compared with the F0 trajectory.

The resulting frequency trajectory from the ac-
tivation map has the same lengths contour F0 and
is compared with it by calculating the RMSE mea-
sure. The Figure 11 illustrates the determined mean
values in consecutive F0 segments and the activa-
tion trajectory obtained using approach shown in
Figure 10 for cases with the lowest RMSE value.
Moreover, the Tab. 4 shows the lowest RMSE value
for individual emotional states grouped by gender.
In addition, the distribution of RMSE values is
shown in Figure 12 for all analysed recordings.
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tion contour q and the Q envelope differed the most.
The lowest RMSE values were obtained for record-
ings representing the sadness (Figure 8a) emotional
state for females equal to 0.06, and for males in neu-
tral (Figure 8b) state the RMSE value was equal to
0.08. On the other hand, the highest RMSE values
belonging to female sentence in anger state (Fig-
ure 8c) and equal to 0.34. In the case of males, the
RMSE was equal to 0.33 for sadness (Figure 8d).
One of the reasons for high RMSE values may be
the low time resolution of the representation of ac-
tivation maps q, which is due to the architecture
of the used network and the scaling of the activa-
tion map to the size of the input CQT represen-
tation. An example of this case is illustrated in
Figure 8d, which shows a relatively complex enve-
lope of a recording whose large number of peaks
negatively affects the RMSE measure. The table 3
shows the full list of RMSE values for all emotional
states and both genders. Additionally, Figure 9 il-
lustrates the distribution of the RMSE measure for
all analysed recordings. As can be seen in the case
of females, the emotional state for which the RMSE
value was the lowest globally was sadness and bore-
dom, which also achieved the lowest RMSE values
in male recordings. These results may show that a
significant part of the information from the convolu-
tional network with the above-mentioned emotional
states occurs in the temporal representation of the
speech signal.

3.3.2 Dominant frequency trajectory in the ac-
tivation map

In the next step, we developed the method pre-
sented in Figure 10 for interpretation of the acti-
vation maps, which allowed us to analyse them in
the frequency domain. This method works based
on the fundamental frequency and enables a direct
comparison of the activation map of a given record-
ing with its F0 trajectory. The entire process can be
performed in the following five steps:

1. The selection of the columns of the activation
matrix Figure 10 (middle panel) corresponding
to the successive segments of F0 and being con-
sistent in time with it as depicted in Figure 10
(top panel).

2. Replace values in selected fragments below half
of the maximum value in a given column of the

activation matrix with zeros. As a result, this
will eliminate the ,,non-essential” elements of
the activation map. An example of the effect of
this operation is shown in

3. Figure 10 (middle panel), where the remaining
non -zero values are shown in grey.

4. The corresponding frequencies are selected for
each column of the activation matrix where they
have non-zero values. Consequently, for each
column in the selected segments, a vector is
created containing as many frequency values as
there were in the given column with non-zero
values.

5. For each vector, its average is calculated, which
gives the average frequency value for each of the
selected columns. This operation is represented
by the formula:

c j =
1
M

M

∑
i=1

R(Gi j), (9)

where j = 1, . . . ,W , c j denotes averaged fre-
quency of column j, M is the number of rows
containing non-zero values, G is the activation
matrix whereas R(·) is the function which re-
turns the frequency related to the cell of the ac-
tivation map.

6. In the last step, the frequency trajectory of the
activation map is created from the averaged val-
ues as depicted in Figure 10 (bottom graph) and
which can be compared with the F0 trajectory.

The resulting frequency trajectory from the ac-
tivation map has the same lengths contour F0 and
is compared with it by calculating the RMSE mea-
sure. The Figure 11 illustrates the determined mean
values in consecutive F0 segments and the activa-
tion trajectory obtained using approach shown in
Figure 10 for cases with the lowest RMSE value.
Moreover, the Tab. 4 shows the lowest RMSE value
for individual emotional states grouped by gender.
In addition, the distribution of RMSE values is
shown in Figure 12 for all analysed recordings.
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Figure 10. Scheme of determining the frequency
trajectory based on the activation map.

As depicted in the Figure 11, in the case of bore-
dom emotion, the trajectory of F0, and the trajectory
determined from the map activation practically co-
incide for recordings that have obtained the lowest
RMSE for both females and males. According to
the table 4, the differences between them changed
from 7Hz to 10Hz. The Figure 12 shows that glob-
ally, boredom state also achieved low values of
RMSE. This case may indicate that the fundamen-
tal frequency contains much relevant information
about this emotional state. The situation is similar
for sadness and neutral states for recordings which
have the lowest RMSE value as shown in Figure 11.
Except for minimal deviations in individual seg-
ments, the trajectories mostly coincide for female
and male recordings. In the Tab. 4, one can also
see that their differences are much smaller than that
of the states anger, fear, and happiness. Whereas
on the Figure 12 can be seen that RMSE values
are in low ranges. In the case of happiness state,
the differences are much more significant for both
female and male recordings. For best cases pre-
sented in Figure 11 trajectories differ quite notice-
ably from each other, and their differences are vary
from 100Hz to 150Hz as shown in Tab. 4. Also,

RMSE values for all recordings representing hap-
piness emotional state have a pretty large spread,
as depicted in Figure 12, which may indicate that
the fundamental frequency much fewer influences
this emotion. The situation is similar for the fe-
male recordings for the fear emotional state. On
the other hand, the analysed set contained only one
recording for males, which cannot be the basis for
any conclusions. The most significant differences
occurred for the emotional state anger. How can
be seen in Figure 11, for recordings with the low-
est RMSE values, the differences are much greater
than in the other emotional states and range from
158Hz to 439Hz as shown in Tab. 4. In the case of
males, the compared trajectories are practically op-
posite. In the global perspective, as shown in Fig-
ure 12, the distribution of the coefficients RMSE
values for all recordings of anger is more varied
and is high as 700Hz. It follows that the fundamen-
tal frequency is a fairly poor source of information
for anger emotional state. The estimation errors of
fundamental frequency F0 also have a negative im-
pact on the comparison process. The errors depend
on the estimation method, quality of speech record-
ings, and F0 estimation method. We observed them
in cases with a clear difference confined to individ-
ual segments for fear and neutral states in the case
of female speakers, as depicted in Figure 11. An ex-
ample of such errors is shown in Figure 13, where
octave errors were the cause of wrongly estimated
F0 values for several signal frames.

3.3.3 Activation maps energy distribution
analysis

In the next stage, we analysed the energies of
input CQT representations in relation to their frag-
ments distinguished by the convolutional neural
network due to its importance in the classification
process. We conducted the analysis using masks
of emotional states. In the first step, for individ-
ual recordings, we determined the energy E of them
CQT representation according to the formula:

E =
H

∑
i=1

W

∑
j=1

C2
i, j, (10)

where C denotes the CQT representation. Next, we
transformed the masks into a binary form P with a
threshold equal β = 1/10 of the maximum value,
which allowed the elimination of the least signifi-
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Figure 11. The lowest RMSE between F0 and c frequency trajectories: females (a), males (b).
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Figure 11. The lowest RMSE between F0 and c frequency trajectories: females (a), males (b).

INTERPRETING CONVOLUTIONAL LAYERS IN . . .

Table 4. Statistical properties of the RMSE values between F0 and c for all emotional states and genders.

Anger Boredom Fear Happiness Neutral Sadness

Female

min 158.44 6.98 86.76 99.86 61.94 17.22
max 1145.22 285.07 654.63 397.00 181.30 171.47
mean 533.10 91.62 249.22 248.43 116.56 110.43
range 986.77 278.09 567.87 297.13 119.36 154.25

Male

min 439.40 9.78 134.71 149.65 51.31 36.51
max 820.42 87.75 134.71 382.33 144.16 61.72

mean 604.01 34.70 134.71 232.55 93.41 49.12
range 381.01 77.97 0.0 232.67 92.84 25.21

Figure 12. RMSE values for all recordings between F0 and c in data set: females (a), and males (b).

Figure 13. Example F0 trajectories with errors: fear (13b01Ab) (a), neutral (13a01Nb) (b), both for
females.
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Table 5. Statistical properties of the Ê ratio for individual emotional states and genders.

Anger Boredom Fear Happiness Neutral Sadness

Female

min 88.9% 81.1% 89.7% 89% 87.8% 81.0%
max 96.6% 96.5% 96.4% 92.4% 93.7% 94.4%

mean 93.9% 91% 93.7% 90.7% 91.2 88.5%
range 7.7% 15.4% 6.7% 3.4% 5.9% 13.4%

Male

min 85.1% 76.1% 93% 90.1% 85.7% 90%
max 96.6% 93.1% 93% 95.5% 94.3% 90.3%

mean 92.4% 88.9% 93% 93.3% 90.4% 90.2%
range 11.5% 17% 0% 5.4% 8.6% 0.3%

cant values:

Pi, j =

{
0, if Ri, j < max(R) ·β
1, otherwise

, (11)

where j = 1, . . . ,W , i = 1, . . . ,H, R is a matrix rep-
resenting a mask of a selected emotional state. In
the next step, the energy E of the CQT represen-
tation was determined again for individual record-
ings. But this time for fragments consistent with in-
dividual masks, which are obtained from the prod-
uct of P and C. Next, we calculated the ratio
Ê of the obtained energies E to the total energy
E expressed as a percentage. The obtained re-
sults for individual variants are presented in Tab. 5,
which shows the minimum values, maximum, aver-
age and range of Ê ratios for each individual emo-
tions grouped by gender. As can be seen, based on
the average values that are around 90% for all emo-
tional states and genders, the convolutional neural
network mainly focused on areas of CQT represen-
tations containing the highest energy. As a result,
these areas are the primary carrier of information
about emotional states. On the other hand, the low-
est mean in the case of females was obtained by
sadness, and in the case of males, it was boredom.
Moreover, the highest mean of Ê was for anger
state for females and happiness for males.

In the case of the range to which there were
recordings of individual emotions, then, for fe-
males, the lowest difference between the minimum
and maximum value was equal to 5.9% for emo-
tion neutral. For males, it was happiness state with
a value of 5.4%. This case may indicate the sta-
bility of the distribution of essential areas within
the recordings of these emotional states. In con-
trast, the highest differences were found for bore-

dom state for both females and males, which were
equal to 15.4% and 17% respectively. Such a situa-
tion may be due to the wide variety of CQT energy
groups for recording them. Recordings represent-
ing happiness for females and fear and sadness for
males were omitted from the analysis due to the low
number of correctly classified samples (below three
samples). For the anger state, for females, the Ê co-
efficients of the recordings belonging to the speaker
with an ID of 16 were significantly different from
other recordings. When omitted, the range drops
from 7.7% to 4%. For males, also the two samples
underestimate the values. However, they belong
to actors with IDs 13 and 15, the remaining sam-
ples in the upper range. This dispersion may result
from the statement’s content with the ID b03, which
both represent. For the boredom state, the two items
have a lower Ê value. However, they belong to the
speaker with the ID 08. Without them, the range
drops from 15.4% to 5.3% for boredom state. For
males, only one sample is very different from the
others and belongs to the actor with an ID equal to
10. Without it, the distribution changed from 17%
to 2.2%. For fear emotional state in case females,
there are no significant differences For males, the
data comes from only one recording, so any useful
observations cannot be performed. For happiness
emotion, in the case of females, the analysis was
omitted due to the small number of recordings. For
males, no significant deviations were observed. The
only interesting situation is for the 10 and 03 actors,
for which the energy ratios are almost identical for
different statements. There are no individual differ-
ences for females for neutral state. For males, the
15 actor’s samples have significantly lower Ê val-
ues than the three samples belonging to three differ-
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Table 5. Statistical properties of the Ê ratio for individual emotional states and genders.

Anger Boredom Fear Happiness Neutral Sadness

Female

min 88.9% 81.1% 89.7% 89% 87.8% 81.0%
max 96.6% 96.5% 96.4% 92.4% 93.7% 94.4%
mean 93.9% 91% 93.7% 90.7% 91.2 88.5%
range 7.7% 15.4% 6.7% 3.4% 5.9% 13.4%

Male

min 85.1% 76.1% 93% 90.1% 85.7% 90%
max 96.6% 93.1% 93% 95.5% 94.3% 90.3%
mean 92.4% 88.9% 93% 93.3% 90.4% 90.2%
range 11.5% 17% 0% 5.4% 8.6% 0.3%

cant values:

Pi, j =

{
0, if Ri, j < max(R) ·β
1, otherwise

, (11)

where j = 1, . . . ,W , i = 1, . . . ,H, R is a matrix rep-
resenting a mask of a selected emotional state. In
the next step, the energy E of the CQT represen-
tation was determined again for individual record-
ings. But this time for fragments consistent with in-
dividual masks, which are obtained from the prod-
uct of P and C. Next, we calculated the ratio
Ê of the obtained energies E to the total energy
E expressed as a percentage. The obtained re-
sults for individual variants are presented in Tab. 5,
which shows the minimum values, maximum, aver-
age and range of Ê ratios for each individual emo-
tions grouped by gender. As can be seen, based on
the average values that are around 90% for all emo-
tional states and genders, the convolutional neural
network mainly focused on areas of CQT represen-
tations containing the highest energy. As a result,
these areas are the primary carrier of information
about emotional states. On the other hand, the low-
est mean in the case of females was obtained by
sadness, and in the case of males, it was boredom.
Moreover, the highest mean of Ê was for anger
state for females and happiness for males.

In the case of the range to which there were
recordings of individual emotions, then, for fe-
males, the lowest difference between the minimum
and maximum value was equal to 5.9% for emo-
tion neutral. For males, it was happiness state with
a value of 5.4%. This case may indicate the sta-
bility of the distribution of essential areas within
the recordings of these emotional states. In con-
trast, the highest differences were found for bore-

dom state for both females and males, which were
equal to 15.4% and 17% respectively. Such a situa-
tion may be due to the wide variety of CQT energy
groups for recording them. Recordings represent-
ing happiness for females and fear and sadness for
males were omitted from the analysis due to the low
number of correctly classified samples (below three
samples). For the anger state, for females, the Ê co-
efficients of the recordings belonging to the speaker
with an ID of 16 were significantly different from
other recordings. When omitted, the range drops
from 7.7% to 4%. For males, also the two samples
underestimate the values. However, they belong
to actors with IDs 13 and 15, the remaining sam-
ples in the upper range. This dispersion may result
from the statement’s content with the ID b03, which
both represent. For the boredom state, the two items
have a lower Ê value. However, they belong to the
speaker with the ID 08. Without them, the range
drops from 15.4% to 5.3% for boredom state. For
males, only one sample is very different from the
others and belongs to the actor with an ID equal to
10. Without it, the distribution changed from 17%
to 2.2%. For fear emotional state in case females,
there are no significant differences For males, the
data comes from only one recording, so any useful
observations cannot be performed. For happiness
emotion, in the case of females, the analysis was
omitted due to the small number of recordings. For
males, no significant deviations were observed. The
only interesting situation is for the 10 and 03 actors,
for which the energy ratios are almost identical for
different statements. There are no individual differ-
ences for females for neutral state. For males, the
15 actor’s samples have significantly lower Ê val-
ues than the three samples belonging to three differ-
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ent actors, whose range is 2.5%. For sadness emo-
tional state, in female’s recordings, the two samples
belonging to speaker 14 and 16 have much smaller
coefficients Ê and represent other statements. Addi-
tionally, the remaining recordings of these speakers
are in the upper range of values, so there is no rule in
this case. Due to the observed and described devia-
tions, in the case of females, the lowest the range of
energy ratio changes falls to anger emotional state
while for males it is boredom state.

4 Conclusions

The paper presents the results of determining
the representation of individual layers of convo-
lutional networks connected with emotional con-
tent. Experiments have been performed to spec-
ify the similarities between activation maps and the
low-level properties of source speech signals. The
database containing utterances with emotional con-
tent was divided into two groups according to the
gender of the speaker. A few studies were carried
out separately due to differences in the vocal tract
and, thus, in the fundamental frequency. For ev-
ery gender type, the database has been further di-
vided into three sets (training, testing, and valida-
tion), considering a balanced division into speak-
ers and emotional states. A dedicated convolu-
tional network architecture was proposed, charac-
terised by a minimised number of pooling opera-
tions to maintain the adequate resolution of gen-
erated activation maps from the last convolutional
layer of the network. The emotional states were
classified using the proposed network to determine
the quality of the generated activation maps. Ac-
tivation maps were generated for all samples from
the test set. Several experiments were carried out
using the algorithm proposed in the study concern-
ing the similarity of energy distributions in activa-
tion maps with the dynamics of changes in funda-
mental frequency. As a result of the conducted ex-
periments we showed that the convolutional neural
network considers the prosodic features of the emo-
tional utterance in the learning process and energy
distribution related to voiced parts of speech con-
tained in the analysed spoken sentences. Addition-
ally, a comparative analysis of the energy distribu-
tion in the activation maps with time-domain en-
velopes were carried out. The results of this analy-

sis showed significant conformity of the energy dis-
tribution in the activation maps, that is, the signif-
icance of the fragments of the input representation
with the recording envelope for emotions such as
boredom and sadness than in other emotions. From
this, it can be concluded that a considerable part of
the information about these emotional states can be
obtained from the temporal structure of the speech
signal. At the last stage of the experiments, we anal-
ysed the ratio of the total energy of the CQT rep-
resentation to the energy in its fragments, which,
from the network’s point of view, turned out to be
the most important in the classification process. As
a result, it turned out that in classifying the emo-
tional states, the neural network mainly uses the ar-
eas of the input speech signal representation, which
contains clusters of time–frequency units with the
highest energy. The resulting activation maps pro-
vide information about the regions of the time–
frequency representation that were the source of
important information about individual emotional
states in the classification process. A detailed anal-
ysis of these areas can be used to generate a ded-
icated feature space characterizing individual emo-
tions, which may improve the classification process.
Moreover, detailing time–frequency ranges of given
emotions can help to understand what physical fea-
tures of the speech signal determine the emotional
properties of the voice. In future work, we plan to
use the proposed algorithm for interpreting recur-
sive and transformer neural networks. In addition,
similar studies will be performed using others time–
frequency representations.
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